Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Int J Mol Sci ; 23(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36555856

RESUMO

Radiation-Induced CardioVascular Disease (RICVD) is an important concern in thoracic radiotherapy with complex underlying pathophysiology. Recently, we proposed DNA methylation as a possible mechanism contributing to RICVD. The current study investigates DNA methylation in heart-irradiated rats and radiotherapy-treated breast cancer (BC) patients. Rats received fractionated whole heart X-irradiation (0, 0.92, 6.9 and 27.6 Gy total doses) and blood was collected after 1.5, 3, 7 and 12 months. Global and gene-specific methylation of the samples were evaluated; and gene expression of selected differentially methylated regions (DMRs) was validated in rat and BC patient blood. In rats receiving an absorbed dose of 27.6 Gy, DNA methylation alterations were detected up to 7 months with differential expression of cardiac-relevant DMRs. Of those, SLMAP showed increased expression at 1.5 months, which correlated with hypomethylation. Furthermore, E2F6 inversely correlated with a decreased global longitudinal strain. In BC patients, E2F6 and SLMAP exhibited differential expression directly and 6 months after radiotherapy, respectively. This study describes a systemic radiation fingerprint at the DNA methylation level, elucidating a possible association of DNA methylation to RICVD pathophysiology, to be validated in future mechanistic studies.


Assuntos
Metilação de DNA , Coração , Animais , Ratos , Coração/efeitos da radiação , Pulmão , Proteínas de Membrana , Mutação , Processamento de Proteína Pós-Traducional , Neoplasias da Mama/radioterapia , Humanos , Feminino
3.
PLoS One ; 17(3): e0265281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35286349

RESUMO

PURPOSE: The aim of this study was to explore the effects of chronic low-dose-rate gamma-radiation at a multi-scale level. The specific objective was to obtain an overall view of the endothelial cell response, by integrating previously published data on different cellular endpoints and highlighting possible different mechanisms underpinning radiation-induced senescence. MATERIALS AND METHODS: Different datasets were collected regarding experiments on human umbilical vein endothelial cells (HUVECs) which were chronically exposed to low dose rates (0, 1.4, 2.1 and 4.1 mGy/h) of gamma-rays until cell replication was arrested. Such exposed cells were analyzed for different complementary endpoints at distinct time points (up to several weeks), investigating cellular functions such as proliferation, senescence and angiogenic properties, as well as using transcriptomics and proteomics profiling. A mathematical model was proposed to describe proliferation and senescence. RESULTS: Simultaneous ceasing of cell proliferation and senescence onset as a function of time were well reproduced by the logistic growth curve, conveying shared equilibria between the two endpoints. The combination of all the different endpoints investigated highlighted a dose-dependence for prematurely induced senescence. However, the underpinning molecular mechanisms appeared to be dissimilar for the different dose rates, thus suggesting a more complex scenario. CONCLUSIONS: This study was conducted integrating different datasets, focusing on their temporal dynamics, and using a systems biology approach. Results of our analysis highlight that different dose rates have different effects in inducing premature senescence, and that the total cumulative absorbed dose also plays an important role in accelerating endothelial cell senescence.


Assuntos
Senescência Celular , Biologia de Sistemas , Células Cultivadas , Raios gama/efeitos adversos , Células Endoteliais da Veia Umbilical Humana , Humanos , Radiobiologia
4.
Epigenetics ; 17(1): 59-80, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33522387

RESUMO

Radiotherapy in cancer treatment involves the use of ionizing radiation for cancer cell killing. Although radiotherapy has shown significant improvements on cancer recurrence and mortality, several radiation-induced adverse effects have been documented. Of these adverse effects, radiation-induced cardiovascular disease (CVD) is particularly prominent among patients receiving mediastinal radiotherapy, such as breast cancer and Hodgkin's lymphoma patients. A number of mechanisms of radiation-induced CVD pathogenesis have been proposed such as endothelial inflammatory activation, premature endothelial senescence, increased ROS and mitochondrial dysfunction. However, current research seems to point to a so-far unexamined and potentially novel involvement of epigenetics in radiation-induced CVD pathogenesis. Firstly, epigenetic mechanisms have been implicated in CVD pathophysiology. In addition, several studies have shown that ionizing radiation can cause epigenetic modifications, especially DNA methylation alterations. As a result, this review aims to provide a summary of the current literature linking DNA methylation to radiation-induced CVD and thereby explore DNA methylation as a possible contributor to radiation-induced CVD pathogenesis.


Assuntos
Doenças Cardiovasculares , Metilação de DNA , Doenças Cardiovasculares/genética , Epigênese Genética , Humanos , Recidiva Local de Neoplasia/genética , Radiação Ionizante
5.
Nucl Med Biol ; 102-103: 1-11, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34242948

RESUMO

Peptide receptor radionuclide therapy (PRRT) is used for the treatment of patients with unresectable or metastasized somatostatin receptor type 2 (SSTR2)-expressing gastroenteropancreatic neuroendocrine tumours (GEP-NETs). The radiolabelled somatostatin analogue [177Lu]Lu-DOTA-TATE delivers its radiation dose to SSTR2-overexpressing tumour cells, resulting in selective cell killing during radioactive decay. While tumour control can be achieved in many patients, complete remissions remain rare, causing the majority of patients to relapse after a certain period of time. This raises the question whether the currently fixed treatment regime (4 × 7.4 GBq) leaves room for dose escalation as a means of improving therapy efficacy. The kidneys have shown to play an important role in defining a patient's tolerability to PRRT. As a consequence of the proximal tubular reabsorption of [177Lu]Lu-DOTA-TATE, via the endocytic megalin/cubilin receptor complex, the radionuclides are retained in the renal interstitium. This results in extended retention of radioactivity in the kidneys, generating a risk for the development of radiation nephropathy. In addition, a decreased kidney function has shown to be associated with a prolonged circulation of [177Lu]Lu-DOTA-TATE, causing increased irradiation to the bone marrow. This can on its turn lead to myelosuppression and haematological toxicity, owing to the marked radio sensitivity of the rapidly proliferating cells in the bone marrow. In contrast to external beam radiotherapy (EBRT), the exact absorbed dose limits for these critical organs (kidneys and bone marrow) in PRRT with [177Lu]Lu-DOTA-TATE are still unclear. Better insights into these uncertainties, can help in optimizing PRRT to reach its maximum therapeutic potential, while avoiding severe adverse events, like nephropathy and hematologic toxicities. In this review we focus on the nephrotoxic effects of PRRT with [177Lu]Lu-DOTA-TATE for the treatment of GEP-NETs. If the absorbed dose to the kidneys can be lowered, higher activities can be administered, enlarging the therapeutic window for PRRT. Therefore, we evaluated the renal protective potential of current and promising future strategies and discuss the importance of (renal) dosimetry in PRRT.


Assuntos
Compostos Heterocíclicos com 1 Anel
6.
Nucl Med Biol ; 100-101: 61-90, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34237502

RESUMO

Thanks to their unique optical and physicochemical properties, gold nanoparticles have gained increased interest as radiosensitizing, photothermal therapy and optical imaging agents to enhance the effectiveness of cancer detection and therapy. Furthermore, their ability to carry multiple medically relevant radionuclides broadens their use to nuclear medicine SPECT and PET imaging as well as targeted radionuclide therapy. In this review, we discuss the radiolabeling process of gold nanoparticles and their use in (multimodal) nuclear medicine imaging to better understand their specific distribution, uptake and retention in different in vivo cancer models. In addition, radiolabeled gold nanoparticles enable image-guided therapy is reviewed as well as the enhancement of targeted radionuclide therapy and nanobrachytherapy through an increased dose deposition and radiosensitization, as demonstrated by multiple Monte Carlo studies and experimental in vitro and in vivo studies.


Assuntos
Nanopartículas Metálicas
7.
Nucl Med Biol ; 98-99: 30-39, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34020337

RESUMO

At present, prostate cancer remains the second most occurring cancer in men, in Europe. Treatment efficacy for therapy of advanced metastatic disease, and metastatic castration-resistant prostate cancer in particular is limited. Prostate-specific membrane antigen (PSMA) is a promising therapeutic target in prostate cancer, seeing the high amount of overexpression on prostate cancer cells. Clinical investigation of PSMA-targeted radionuclide therapy has shown good clinical efficacy. However, adverse effects are observed of which salivary gland hypofunction and xerostomia are among the most prominent. Salivary gland toxicity is currently the dose-limiting side effect for PSMA-targeted radionuclide therapy, and more specifically for PSMA-targeted alpha therapy. To date, mechanisms underlying the salivary gland uptake of PSMA-targeting compounds and the subsequent damage to the salivary glands remain largely unknown. Furthermore, preventive strategies for salivary gland uptake or strategies for treatment of salivary gland toxicity are needed. This review focuses on the current knowledge on uptake mechanisms of PSMA-targeting compounds in the salivary glands and the research performed to investigate different strategies to prevent or treat salivary gland toxicity.


Assuntos
Antígenos de Superfície , Glutamato Carboxipeptidase II , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração
8.
Eur J Nucl Med Mol Imaging ; 48(11): 3365-3377, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33912987

RESUMO

With an increasing variety of radiopharmaceuticals for diagnostic or therapeutic nuclear medicine as valuable diagnostic or treatment option, radiobiology plays an important role in supporting optimizations. This comprises particularly safety and efficacy of radionuclide therapies, specifically tailored to each patient. As absorbed dose rates and absorbed dose distributions in space and time are very different between external irradiation and systemic radionuclide exposure, distinct radiation-induced biological responses are expected in nuclear medicine, which need to be explored. This calls for a dedicated nuclear medicine radiobiology. Radiobiology findings and absorbed dose measurements will enable an improved estimation and prediction of efficacy and adverse effects. Moreover, a better understanding on the fundamental biological mechanisms underlying tumor and normal tissue responses will help to identify predictive and prognostic biomarkers as well as biomarkers for treatment follow-up. In addition, radiobiology can form the basis for the development of radiosensitizing strategies and radioprotectant agents. Thus, EANM believes that, beyond in vitro and preclinical evaluations, radiobiology will bring important added value to clinical studies and to clinical teams. Therefore, EANM strongly supports active collaboration between radiochemists, radiopharmacists, radiobiologists, medical physicists, and physicians to foster research toward precision nuclear medicine.


Assuntos
Neoplasias , Medicina Nuclear , Biomarcadores , Humanos , Radiobiologia , Cintilografia
10.
Mol Med Rep ; 23(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33786610

RESUMO

Thoracic radiotherapy is an effective treatment for many types of cancer; however it is also associated with an increased risk of developing cardiovascular disease (CVD), appearing mainly ≥10 years after radiation exposure. The present study investigated acute and early term physiological and molecular changes in the cardiovascular system after ionizing radiation exposure. Female and male ApoE­/­ mice received a single exposure of low or high dose X­ray thoracic irradiation (0.1 and 10 Gy). The level of cholesterol and triglycerides, as well as a large panel of inflammatory markers, were analyzed in serum samples obtained at 24 h and 1 month after irradiation. The secretion of inflammatory markers was further verified in vitro in coronary artery and microvascular endothelial cell lines after exposure to low and high dose of ionizing radiation (0.1 and 5 Gy). Local thoracic irradiation of ApoE­/­ mice increased serum growth differentiation factor­15 (GDF­15) and C­X­C motif chemokine ligand 10 (CXCL10) levels in both female and male mice 24 h after high dose irradiation, which were also secreted from coronary artery and microvascular endothelial cells in vitro. Sex­specific responses were observed for triglyceride and cholesterol levels, and some of the assessed inflammatory markers as detailed below. Male ApoE­/­ mice demonstrated elevated intercellular adhesion molecule­1 and P­selectin at 24 h, and adiponectin and plasminogen activator inhibitor­1 at 1 month after irradiation, while female ApoE­/­ mice exhibited decreased monocyte chemoattractant protein­1 and urokinase­type plasminogen activator receptor at 24 h, and basic fibroblast growth factor 1 month after irradiation. The inflammatory responses were mainly significant following high dose irradiation, but certain markers showed significant changes after low dose exposure. The present study revealed that acute/early inflammatory responses occurred after low and high dose thoracic irradiation. However, further research is required to elucidate early asymptomatic changes in the cardiovascular system post thoracic X­irradiation and to investigate whether GDF­15 and CXCL10 could be considered as potential biomarkers for the early detection of CVD risk in thoracic radiotherapy­treated patients.


Assuntos
Apolipoproteínas E/genética , Aterosclerose/metabolismo , Quimiocina CXCL10/metabolismo , Endotélio Vascular/efeitos da radiação , Fator 15 de Diferenciação de Crescimento/metabolismo , Raios X , Animais , Apolipoproteínas E/deficiência , Aterosclerose/genética , Molécula 1 de Adesão Celular/genética , Molécula 1 de Adesão Celular/metabolismo , Linhagem Celular , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocina CXCL10/genética , Células Endoteliais/metabolismo , Células Endoteliais/efeitos da radiação , Endotélio Vascular/citologia , Feminino , Fator 1 de Crescimento de Fibroblastos/genética , Fator 1 de Crescimento de Fibroblastos/metabolismo , Fator 15 de Diferenciação de Crescimento/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Selectina-P/genética , Selectina-P/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo
11.
Cell Mol Life Sci ; 78(7): 3087-3103, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33388835

RESUMO

Radiotherapy is an effective treatment for breast cancer and other thoracic tumors. However, while high-energy radiotherapy treatment successfully kills cancer cells, radiation exposure of the heart and large arteries cannot always be avoided, resulting in secondary cardiovascular disease in cancer survivors. Radiation-induced changes in the cardiac vasculature may thereby lead to coronary artery atherosclerosis, which is a major cardiovascular complication nowadays in thoracic radiotherapy-treated patients. The underlying biological and molecular mechanisms of radiation-induced atherosclerosis are complex and still not fully understood, resulting in potentially improper radiation protection. Ionizing radiation (IR) exposure may damage the vascular endothelium by inducing DNA damage, oxidative stress, premature cellular senescence, cell death and inflammation, which act to promote the atherosclerotic process. Intercellular communication mediated by connexin (Cx)-based gap junctions and hemichannels may modulate IR-induced responses and thereby the atherosclerotic process. However, the role of endothelial Cxs and their channels in atherosclerotic development after IR exposure is still poorly defined. A better understanding of the underlying biological pathways involved in secondary cardiovascular toxicity after radiotherapy would facilitate the development of effective strategies that prevent or mitigate these adverse effects. Here, we review the possible roles of intercellular Cx driven signaling and communication in radiation-induced atherosclerosis.


Assuntos
Aterosclerose/patologia , Comunicação Celular , Conexinas/metabolismo , Junções Comunicantes/fisiologia , Radiação Ionizante , Animais , Aterosclerose/etiologia , Aterosclerose/metabolismo , Humanos , Transdução de Sinais
12.
J Biomed Nanotechnol ; 16(6): 985-996, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33187593

RESUMO

Cetuximab-conjugated gold nanoparticles are known to target cancer cells, but display toxicity towards normal kidney, liver and endothelial cells in vitro. In this study, we investigated their pharmacokinetics, biodistribution and toxicity after intravenous administration in healthy mice. Our data showed that these nanoparticles were rapidly cleared from the blood and accumulated mainly in the liver and spleen with long-term retention. Acute liver injury, inflammatory activity and vascular damage were transient and negligible, as confirmed by the liver functionality tests and serum marker analysis. There was no sign of altered liver, kidney, lung and spleen morphology up to 4 weeks post-injection. After 6 months, kidney casts and splenic apoptosis appeared to be more prevalent than in the controls. Furthermore, occasional immune cell infiltration was observed in the lungs. Therefore, we recommend additional in vivo studies, in order to investigate the long-term toxicity and elimination of gold nanoparticles after multiple dosing in their preclinical validation as new targeted anti-cancer therapies.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Animais , Células Endoteliais , Ouro/metabolismo , Ouro/toxicidade , Nanopartículas Metálicas/toxicidade , Camundongos , Baço/metabolismo , Distribuição Tecidual
13.
Front Pharmacol ; 11: 268, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32231569

RESUMO

BACKGROUND AND PURPOSE: Up to 50-60% of all cancer patients receive radiotherapy as part of their treatment strategy. However, the mechanisms accounting for increased vascular risks after irradiation are not completely understood. Mitochondrial dysfunction has been identified as a potential cause of radiation-induced atherosclerosis. MATERIALS AND METHODS: Assays for apoptosis, cellular metabolism, mitochondrial DNA content, functionality and morphology were used to compare the response of endothelial cells to a single 2 Gy dose of X-rays under basal conditions or after pharmacological treatments that either reduced (EtBr) or increased (rosiglitazone) mitochondrial content. RESULTS: Exposure to ionizing radiation caused a persistent reduction in mitochondrial content of endothelial cells. Pharmacological reduction of mitochondrial DNA content rendered endothelial cells more vulnerable to radiation-induced apoptosis, whereas rosiglitazone treatment increased oxidative metabolism and redox state and decreased the levels of apoptosis after irradiation. CONCLUSION: Pre-existing mitochondrial damage sensitizes endothelial cells to ionizing radiation-induced mitochondrial dysfunction. Rosiglitazone protects endothelial cells from the detrimental effects of radiation exposure on mitochondrial metabolism and oxidative stress. Thus, our findings indicate that rosiglitazone may have potential value as prophylactic for radiation-induced atherosclerosis.

14.
Front Pharmacol ; 11: 212, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210810

RESUMO

BACKGROUND: Emerging evidence indicates an excess risk of late occurring cardiovascular diseases, especially atherosclerosis, after thoracic cancer radiotherapy. Ionizing radiation (IR) induces cellular effects which may induce endothelial cell dysfunction, an early marker for atherosclerosis. In addition, intercellular communication through channels composed of transmembrane connexin proteins (Cxs), i.e. Gap junctions (direct cell-cell coupling) and hemichannels (paracrine release/uptake pathway) can modulate radiation-induced responses and therefore the atherosclerotic process. However, the role of endothelial hemichannel in IR-induced atherosclerosis has never been described before. MATERIALS AND METHODS: Telomerase-immortalized human Coronary Artery/Microvascular Endothelial cells (TICAE/TIME) were exposed to X-rays (0.1 and 5 Gy). Production of reactive oxygen species (ROS), DNA damage, cell death, inflammatory responses, and senescence were assessed with or without applying a Cx43 hemichannel blocker (TAT-Gap19). RESULTS: We report here that IR induces an increase in oxidative stress, cell death, inflammatory responses (IL-8, IL-1ß, VCAM-1, MCP-1, and Endothelin-1) and premature cellular senescence in TICAE and TIME cells. These effects are significantly reduced in the presence of the Cx43 hemichannel-targeting peptide TAT-Gap19. CONCLUSION: Our findings suggest that endothelial Cx43 hemichannels contribute to various IR-induced processes, such as ROS, cell death, inflammation, and senescence, resulting in an increase in endothelial cell damage, which could be protected by blocking these hemichannels. Thus, targeting Cx43 hemichannels may potentially exert radioprotective effects.

15.
EJNMMI Phys ; 7(1): 8, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32040783

RESUMO

BACKGROUND: Survival and linear-quadratic model fitting parameters implemented in treatment planning for targeted radionuclide therapy depend on accurate cellular dosimetry. Therefore, we have built a refined cellular dosimetry model for [177Lu]Lu-DOTA-[Tyr3]octreotate (177Lu-DOTATATE) in vitro experiments, accounting for specific cell morphologies and sub-cellular radioactivity distributions. METHODS: Time activity curves were measured and modeled for medium, membrane-bound, and internalized activity fractions over 6 days. Clonogenic survival assays were performed at various added activities (0.1-2.5 MBq/ml). 3D microscopy images (stained for cytoplasm, nucleus, and Golgi) were used as reference for developing polygonal meshes (PM) in 3DsMax to accurately render the cellular and organelle geometry. Absorbed doses to the nucleus per decay (S values) were calculated for 3 cellular morphologies: spheres (MIRDcell), truncated cone-shaped constructive solid geometry (CSG within MCNP6.1), and realistic PM models, using Geant4-10.03. The geometrical set-up of the clonogenic survival assays was modeled, including dynamic changes in proliferation, proximity variations, and cell death. The absorbed dose to the nucleus by the radioactive source cell (self-dose) and surrounding source cells (cross-dose) was calculated applying the MIRD formalism. Finally, the correlation between absorbed dose and survival fraction was fitted using a linear dose-response curve (high α/ß or fast sub-lethal damage repair half-life) for different assumptions, related to cellular shape and localization of the internalized fraction of activity. RESULTS: The cross-dose, depending on cell proximity and colony formation, is a minor (15%) contributor to the total absorbed dose. Cellular volume (inverse exponential trend), shape modeling (up to 65%), and internalized source localization (up to + 149% comparing cytoplasm to Golgi) significantly influence the self-dose to nucleus. The absorbed dose delivered to the nucleus during a clonogenic survival assay is 3-fold higher with MIRDcell compared to the polygonal mesh structures. Our cellular dosimetry model indicates that 177Lu-DOTATATE treatment might be more effective than suggested by average spherical cell dosimetry, predicting a lower absorbed dose for the same cellular survival. Dose-rate effects and heterogeneous dose delivery might account for differences in dose-response compared to x-ray irradiation. CONCLUSION: Our results demonstrate that modeling of cellular and organelle geometry is crucial to perform accurate in vitro dosimetry.

16.
Int J Nanomedicine ; 14: 4991-5015, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31371943

RESUMO

Purpose: This study evaluates the cytotoxicity of AuNPs coated with polyallylamine (AuNPs-PAA) and conjugated or not to the epidermal growth factor receptor (EGFR)-targeting antibody Cetuximab (AuNPs-PAA-Ctxb) in normal human kidney (HK-2), liver (THLE-2) and microvascular endothelial (TIME) cells, and compares it with two cancer cell lines that are EGFR-overexpressing (A431) or EGFR-negative (MDA-MB-453). Results: Conjugation of Cetuximab to AuNPs-PAA increased the AuNPs-PAA-Ctxb interactions with cells, but reduced their cytotoxicity. TIME cells exhibited the strongest reduction in viability after exposure to AuNPs-PAA(±Ctxb), followed by THLE-2, MDA-MB-453, HK-2 and A431 cells. This cell type-dependent sensitivity was strongly correlated to the inhibition of thioredoxin reductase (TrxR) and glutathione reductase (GR), and to the depolarization of the mitochondrial membrane potential. Both are suggested to initiate apoptosis, which was indeed detected in a concentration- and time-dependent manner. The role of oxidative stress in AuNPs-PAA(±Ctxb)-induced cytotoxicity was demonstrated by co-incubation of the cells with N-acetyl L-cysteine (NAC), which significantly decreased apoptosis and mitochondrial membrane depolarization. Conclusion: This study helps to identify the cells and tissues that could be sensitive to AuNPs and deepens the understanding of the risks associated with the use of AuNPs in vivo.


Assuntos
Antioxidantes/metabolismo , Ouro/química , Nanopartículas Metálicas/química , Acetilcisteína/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cetuximab/farmacologia , Endocitose/efeitos dos fármacos , Glutationa Redutase/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Nanopartículas Metálicas/ultraestrutura , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Tamanho da Partícula , Poliaminas/química , Substâncias Protetoras/farmacologia , Eletricidade Estática , Tiorredoxina Dissulfeto Redutase/metabolismo
17.
Sci Rep ; 9(1): 4643, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31217426

RESUMO

Radiotherapy is an effective treatment for most tumor types. However, emerging evidence indicates an increased risk for atherosclerosis after ionizing radiation exposure, initiated by endothelial cell dysfunction. Interestingly, endothelial cells express connexin (Cx) proteins that are reported to exert proatherogenic as well as atheroprotective effects. Furthermore, Cxs form channels, gap junctions and hemichannels, that are involved in bystander signaling that leads to indirect radiation effects in non-exposed cells. We here aimed to investigate the consequences of endothelial cell irradiation on Cx expression and channel function. Telomerase immortalized human Coronary Artery/Microvascular Endothelial cells were exposed to single and fractionated X-rays. Several biological endpoints were investigated at different time points after exposure: Cx gene and protein expression, gap junctional dye coupling and hemichannel function. We demonstrate that single and fractionated irradiation induce upregulation of proatherogenic Cx43 and downregulation of atheroprotective Cx40 gene and protein levels in a dose-dependent manner. Single and fractionated irradiation furthermore increased gap junctional communication and induced hemichannel opening. Our findings indicate alterations in Cx expression that are typically observed in endothelial cells covering atherosclerotic plaques. The observed radiation-induced increase in Cx channel function may promote bystander signaling thereby exacerbating endothelial cell damage and atherogenesis.


Assuntos
Conexinas/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/efeitos da radiação , Linhagem Celular , Regulação para Baixo/efeitos da radiação , Junções Comunicantes/metabolismo , Expressão Gênica/efeitos da radiação , Humanos , Placa Aterosclerótica/metabolismo , Radiação Ionizante , Transdução de Sinais/efeitos da radiação
19.
Cell Mol Life Sci ; 76(4): 699-728, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30377700

RESUMO

The endothelium, a tissue that forms a single layer of cells lining various organs and cavities of the body, especially the heart and blood as well as lymphatic vessels, plays a complex role in vascular biology. It contributes to key aspects of vascular homeostasis and is also involved in pathophysiological processes, such as thrombosis, inflammation, and hypertension. Epidemiological data show that high doses of ionizing radiation lead to cardiovascular disease over time. The aim of this review is to summarize the current knowledge on endothelial cell activation and dysfunction after ionizing radiation exposure as a central feature preceding the development of cardiovascular diseases.


Assuntos
Células Endoteliais/efeitos da radiação , Endotélio Vascular/efeitos da radiação , Endotélio/efeitos da radiação , Lesões por Radiação/fisiopatologia , Radiação Ionizante , Animais , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/fisiopatologia , Senescência Celular/efeitos da radiação , Células Endoteliais/patologia , Endotélio/patologia , Endotélio/fisiopatologia , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Humanos , Modelos Biológicos
20.
Front Pharmacol ; 8: 570, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28993729

RESUMO

Background and Purpose: Radiotherapy is an essential tool for cancer treatment. In order to spare normal tissues and to reduce the risk of normal tissue complications, particle therapy is a method of choice. Although a large part of healthy tissues can be spared due to improved depth dose characteristics, little is known about the biological and molecular mechanisms altered after particle irradiation in healthy tissues. Elucidation of these effects is also required in the context of long term space flights, as particle radiation is the main contributor to the radiation effects observed in space. Endothelial cells (EC), forming the inner layer of all vascular structures, are especially sensitive to irradiation and, if damaged, contribute to radiation-induced cardiovascular disease. Materials and Methods: Transcriptomics, proteomics and cytokine analyses were used to compare the response of ECs irradiated or not with a single 2 Gy dose of X-rays or Fe ions measured one and 7 days post-irradiation. To support the observed inflammatory effects, monocyte adhesion on ECs was also assessed. Results: Experimental data indicate time- and radiation quality-dependent changes of the EC response to irradiation. The irradiation impact was more pronounced and longer lasting for Fe ions than for X-rays. Both radiation qualities decreased the expression of genes involved in cell-cell adhesion and enhanced the expression of proteins involved in caveolar mediated endocytosis signaling. Endothelial inflammation and adhesiveness were increased with X-rays, but decreased after Fe ion exposure. Conclusions: Fe ions induce pro-atherosclerotic processes in ECs that are different in nature and kinetics than those induced by X-rays, highlighting radiation quality-dependent differences which can be linked to the induction and progression of cardiovascular diseases (CVD). Our findings give a better understanding of the underlying processes triggered by particle irradiation in ECs, a crucial aspect for the development of protective measures for cancer patients undergoing particle therapy and for astronauts in space.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...