Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(5): e15710, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37215786

RESUMO

In this paper, an innovative mathematical approach is adopted to construct new formulation for exploring thermal characteristics in Jeffery Hamel flow between non-parallel convergent-divergent channels using non-Fourier's law. Due to the occurrence of isothermal flow of non-Newtonian fluids through non-uniform surfaces in many industrial and technological processes, such as film condensation, plastic sheet deformation, crystallization, cooling of metallic sheets, design of nozzles devices, supersonic and various heat exchangers, and glass and polymer industries, the current research is focused on this topic. To modulate this flow, the flow stream is subjected in a non-uniform channel. By incorporating relaxations in Fourier's law, thermal and concentration flux intensities are examined. In the process of mathematically simulating the flow problem, we constructed a set of governing partial differential equations that were embedded with a variety of various parameters. These equations are simplified into order differential equations using the vogue variable conversion approach. By selecting the default tolerance, the MATLAB solver bvp4c completes the numerical simulation. The temperature and concentration profiles were determined to be affected in opposing ways by thermal and concentration relaxations, while thermophoresis improved both fluxes. Inertial forces in a convergent channel accelerate the fluid in a convergent channel, while in the divergent channel the stream is shrink. The temperature distribution of Fourier's law is stronger than that of the non-Fourier's heat flux model. The study has real-world significance in the food business and is pertinent to energy systems, biomedical technology, and contemporary aircraft systems.

2.
Sensors (Basel) ; 22(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36433198

RESUMO

Intelligent reflecting surfaces (IRS) and power-domain non-orthogonal multiple access (PD-NOMA) have recently gained significant attention for enhancing the performance of next-generation wireless communications networks. More specifically, IRS can smartly reconfigure the incident signal of the source towards the destination node, extending the wireless coverage and improving the channel capacity without consuming additional energy. On the other side, PD-NOMA can enhance the number of devices in the network without using extra spectrum resources. This paper proposes a new optimization framework for IRS-enhanced NOMA communications where multiple drones transmit data to the ground Internet of Things (IoT) devices under successive interference cancellation errors. In particular, the power budget of each drone, PD-NOMA power allocation of IoT devices, and the phase shift matrix of IRS are simultaneously optimized to enhance the total spectral efficiency of the system. Given the system model and optimization setup, the formulated problem is coupled with three variables, making it very complex and non-convex. Thus, this work first transforms and decouples the problem into subproblems and then obtains the efficient solution in two steps. In the first step, the closed-form solutions for the power budget and PD-NOMA power allocation subproblem at each drone are obtained through Karush-Kuhn-Tucker (KKT) conditions. In the second step, the subproblem of efficient phase shift design for each IRS is solved using successive convex approximation and DC programming. Numerical results demonstrate the performance of the proposed optimization scheme in comparison to the benchmark schemes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...