Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(7)2023 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-37510236

RESUMO

Long non-coding RNAs (lncRNAs) are RNA molecules longer than 200 nucleotides that do not encode proteins. Experimental studies have shown the diversity and importance of lncRNA functions in plants. To expand knowledge about lncRNAs in other species, computational pipelines that allow for standardised data-processing steps in a mode that does not require user control up until the final result were actively developed recently. These advancements enable wider functionality for lncRNA data identification and analysis. In the present work, we propose the ICAnnoLncRNA pipeline for the automatic identification, classification and annotation of plant lncRNAs in assembled transcriptomic sequences. It uses the LncFinder software for the identification of lncRNAs and allows the adjustment of recognition parameters using genomic data for which lncRNA annotation is available. The pipeline allows the prediction of lncRNA candidates, alignment of lncRNA sequences to the reference genome, filtering of erroneous/noise transcripts and probable transposable elements, lncRNA classification by genome location, comparison with sequences from external databases and analysis of lncRNA structural features and expression. We used transcriptomic sequences from 15 maize libraries assembled by Trinity and Hisat2/StringTie to demonstrate the application of the ICAnnoLncRNA pipeline.


Assuntos
Perfilação da Expressão Gênica , RNA Longo não Codificante/genética , Transcriptoma , Zea mays/genética , Software
2.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36982787

RESUMO

Solanum tuberosum L. (common potato) is one of the most important crops produced almost all over the world. Genomic sequences of potato opens the way for studying the molecular variations related to diversification. We performed a reconstruction of genomic sequences for 15 tetraploid potato cultivars grown in Russia using short reads. Protein-coding genes were identified; conserved and variable parts of pan-genome and the repertoire of the NBS-LRR genes were characterized. For comparison, we used additional genomic sequences for twelve South American potato accessions, performed analysis of genetic diversity, and identified the copy number variations (CNVs) in two these groups of potato. Genomes of Russian potato cultivars were more homogeneous by CNV characteristics and have smaller maximum deletion size in comparison with South American ones. Genes with different CNV occurrences in two these groups of potato accessions were identified. We revealed genes of immune/abiotic stress response, transport and five genes related to tuberization and photoperiod control among them. Four genes related to tuberization and photoperiod were investigated in potatoes previously (phytochrome A among them). A novel gene, homologous to the poly(ADP-ribose) glycohydrolase (PARG) of Arabidopsis, was identified that may be involved in circadian rhythm control and contribute to the acclimatization processes of Russian potato cultivars.


Assuntos
Solanum tuberosum , Solanum tuberosum/genética , Variações do Número de Cópias de DNA , Genoma de Planta , Genômica , Tetraploidia
3.
Front Plant Sci ; 14: 1336192, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38283969

RESUMO

Introduction: Pubescence is an important phenotypic trait observed in both vegetative and generative plant organs. Pubescent plants demonstrate increased resistance to various environmental stresses such as drought, low temperatures, and pests. It serves as a significant morphological marker and aids in selecting stress-resistant cultivars, particularly in wheat. In wheat, pubescence is visible on leaves, leaf sheath, glumes and nodes. Regarding glumes, the presence of pubescence plays a pivotal role in its classification. It supplements other spike characteristics, aiding in distinguishing between different varieties within the wheat species. The determination of pubescence typically involves visual analysis by an expert. However, methods without the use of binocular loupe tend to be subjective, while employing additional equipment is labor-intensive. This paper proposes an integrated approach to determine glume pubescence presence in spike images captured under laboratory conditions using a digital camera and convolutional neural networks. Methods: Initially, image segmentation is conducted to extract the contour of the spike body, followed by cropping of the spike images to an equal size. These images are then classified based on glume pubescence (pubescent/glabrous) using various convolutional neural network architectures (Resnet-18, EfficientNet-B0, and EfficientNet-B1). The networks were trained and tested on a dataset comprising 9,719 spike images. Results: For segmentation, the U-Net model with EfficientNet-B1 encoder was chosen, achieving the segmentation accuracy IoU = 0.947 for the spike body and 0.777 for awns. The classification model for glume pubescence with the highest performance utilized the EfficientNet-B1 architecture. On the test sample, the model exhibited prediction accuracy parameters of F1 = 0.85 and AUC = 0.96, while on the holdout sample it showed F1 = 0.84 and AUC = 0.89. Additionally, the study investigated the relationship between image scale, artificial distortions, and model prediction performance, revealing that higher magnification and smaller distortions yielded a more accurate prediction of glume pubescence.

4.
Plants (Basel) ; 11(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36015408

RESUMO

The size, shape, and color of wheat seeds are important traits that are associated with yield and flour quality (size, shape), nutritional value, and pre-harvest sprouting (coat color). These traits are under multigenic control, and to dissect their molecular and genetic basis, quantitative trait loci (QTL) analysis is used. We evaluated 114 recombinant inbred lines (RILs) in a bi-parental RIL mapping population (the International Triticeae Mapping Initiative, ITMI/MP) grown in 2014 season. We used digital image analysis for seed phenotyping and obtained data for seven traits describing seed size and shape and 48 traits of seed coat color. We identified 212 additive and 34 pairs of epistatic QTLs on all the chromosomes of wheat genome except chromosomes 1A and 5D. Many QTLs were overlapping. We demonstrated that the overlap between QTL regions was low for seed size/shape traits and high for coat color traits. Using the literature and KEGG data, we identified sets of genes in Arabidopsis and rice from the networks controlling seed size and color. Further, we identified 29 and 14 candidate genes for seed size-related loci and for loci associated with seed coat color, respectively.

5.
Plants (Basel) ; 10(8)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34451545

RESUMO

Diseases of cereals caused by pathogenic fungi can significantly reduce crop yields. Many cultures are exposed to them. The disease is difficult to control on a large scale; thus, one of the relevant approaches is the crop field monitoring, which helps to identify the disease at an early stage and take measures to prevent its spread. One of the effective control methods is disease identification based on the analysis of digital images, with the possibility of obtaining them in field conditions, using mobile devices. In this work, we propose a method for the recognition of five fungal diseases of wheat shoots (leaf rust, stem rust, yellow rust, powdery mildew, and septoria), both separately and in case of multiple diseases, with the possibility of identifying the stage of plant development. A set of 2414 images of wheat fungi diseases (WFD2020) was generated, for which expert labeling was performed by the type of disease. More than 80% of the images in the dataset correspond to single disease labels (including seedlings), more than 12% are represented by healthy plants, and 6% of the images labeled are represented by multiple diseases. In the process of creating this set, a method was applied to reduce the degeneracy of the training data based on the image hashing algorithm. The disease-recognition algorithm is based on the convolutional neural network with the EfficientNet architecture. The best accuracy (0.942) was shown by a network with a training strategy based on augmentation and transfer of image styles. The recognition method was implemented as a bot on the Telegram platform, which allows users to assess plants by lesions in the field conditions.

6.
Plants (Basel) ; 11(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35009042

RESUMO

Seed storage is important to farmers, breeders and for germplasm preservation. During storage, seeds accumulate damage at the structural and metabolic level, which disrupt their function and reduce resistance to adverse external conditions. In this regard, issues related to seed aging prove to be relevant for maintaining the viability of genetic collections. We analyzed morphological characteristics of grains and their coat color for 44 recombinant inbred lines (RILs) of bread wheat grown in four different seasons, 2003, 2004, 2009 and 2014. Our investigations were performed in 2020. For 19 RILs from the same seasons germination was evaluated. Our results demonstrate that genotype significantly affects the variability of all seed traits, and the year of harvesting affects about 80% of them (including all the traits of shape and size). To identify the trend between changes in grain characteristics and harvesting year, we estimated correlation coefficients between them. No significant trend was detected for the grain shape/size traits, while 90% of the color traits demonstrated such a trend. The most significant negative correlations were found between the harvesting year and the traits of grain redness: the greater the storage time, the more intensive is red color component for the grains. At the same time, it was shown that grains of longer storage time (earlier harvesting year) have lighter coat. Analysis of linear correlations between germination of wheat seeds of different genotypes and harvesting years and their seed traits revealed a negative linear relationship between the red component of coat color and germination: the redder the grains, the lower their germination rate. The results obtained demonstrate manifestations of metabolic changes in the coat of grains associated with storage time and their relationship with a decrease of seed viability.

7.
BMC Plant Biol ; 20(Suppl 1): 350, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33050888

RESUMO

BACKGROUND: Globodera rostochiensis belongs to major potato pathogens with a sophisticated mechanism of interaction with roots of the host plants. Resistance of commercial varieties is commonly based on specific R genes introgressed from natural populations of related wild species and from native potato varieties grown in the Andean highlands. Investigation of molecular resistance mechanisms and screening the natural populations for novel R genes are important for both fundamental knowledge on plant pathogen interactions and breeding for durable resistance. Here we exploited the Solanum phureja accessions collected in South America with contrasting resistance to G. rostochiensis. RESULTS: The infestation of S. phureja with G. rostochiensis juveniles resulted in wounding stress followed by activation of cell division and tissue regeneration processes. Unlike the susceptible S. phureja genotype, the resistant accession reacted by rapid induction of variety of stress response related genes. This chain of molecular events accompanies the hypersensitive response at the juveniles' invasion sites and provides high-level resistance. Transcriptomic analysis also revealed considerable differences between the analyzed S. phureja genotypes and the reference genome. CONCLUSION: The molecular processes in plant roots associated with changes in gene expression patterns in response to G. rostochiensis infestation and establishment of either resistant or susceptible phenotypes are discussed. De novo transcriptome assembling is considered as an important tool for discovery of novel resistance traits in S. phureja accessions.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/parasitologia , Raízes de Plantas/parasitologia , Solanum/parasitologia , Tylenchoidea/fisiologia , Animais , Ontologia Genética , Genótipo , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Raízes de Plantas/imunologia , Solanum/genética , Transcriptoma
8.
Biol Open ; 9(10)2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-32917765

RESUMO

A method for automation of imago quantifying and fecundity assessment in Drosophila with the use of mobile devices running Android operating system is proposed. The traditional manual method of counting the progeny takes a long time and limits the opportunity of making large-scale experiments. Thus, the development of computerized methods that would allow us to automatically make a quantitative estimate of Drosophilamelanogaster fecundity is an urgent requirement. We offer a modification of the mobile application SeedCounter that analyzes images of objects placed on a standard sheet of paper for an automatic calculation of D. melanogaster offspring or quantification of adult flies in any other kind of experiment. The relative average error in estimates of the number of flies by mobile app is about 2% in comparison with the manual counting and the processing time is six times shorter. Study of the effects of imaging conditions on accuracy of flies counting showed that lighting conditions do not significantly affect this parameter, and higher accuracy can be achieved using high-resolution smartphone cameras (8 Mpx and more). These results indicate the high accuracy and efficiency of the method suggested.This article has an associated First Person interview with the first author of the paper.


Assuntos
Drosophila/fisiologia , Fertilidade , Reprodução , Smartphone , Animais , Feminino , Aplicativos Móveis , Reprodutibilidade dos Testes
9.
Plants (Basel) ; 9(9)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854417

RESUMO

YUCCA (YUCCA flavin-dependent monooxygenase) is one of the two enzymes of the main auxin biosynthesis pathway (tryptophan aminotransferase enzyme (TAA)/YUCCA) in land plants. The evolutionary origin of the YUCCA family is currently controversial: YUCCAs are assumed to have emerged via a horizontal gene transfer (HGT) from bacteria to the most recent common ancestor (MRCA) of land plants or to have inherited it from their ancestor, the charophyte algae. To refine YUCCA origin, we performed a phylogenetic analysis of the class B flavoprotein monooxygenases and comparative analysis of the sequences belonging to different families of this protein class. We distinguished a new protein family, named type IIb flavin-containing monooxygenases (FMOs), which comprises homologs of YUCCA from Rhodophyta, Chlorophyta, and Charophyta, land plant proteins, and FMO-E, -F, and -G of the bacterium Rhodococcus jostii RHA1. The type IIb FMOs differ considerably in the sites and domain composition from the other families of class B flavoprotein monooxygenases, YUCCAs included. The phylogenetic analysis also demonstrated that the type IIb FMO clade is not a sibling clade of YUCCAs. We have also identified the bacterial protein group named YUC-like FMOs as the closest to YUCCA homologs. Our results support the hypothesis of the emergence of YUCCA via HGT from bacteria to MRCA of land plants.

10.
Protein J ; 39(1): 73-84, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31933011

RESUMO

Antimicrobial peptides (AMPs) are natural antagonistic tools of many bacteria and are considered as attractive antimicrobial agents for the treatment of bacteria with multidrug resistance. Lactic acid bacteria from the gastrointestinal tract of animals and human produce various AMPs inhibiting the growth of pathogens. Here we report the isolation and identification of novel Lactobacillus fermentum strain HF-D1 from the human gut producing AMPs which prevents the growth of P. aeruginosa and S. marcescens. The active fraction of peptides was obtained from the culture liquid by precipitation at 80% saturation of ammonium sulphate. For peptides identification, the precipitate was treated with guanidine hydrochloride to desorb from proteins, separated with ultrafiltration on spin columns with 10,000 MWCO, desalted with a reversed-phase chromatography and subjected to LC-MS/MS analysis. The in silico analysis of the identified 1111 peptides by using ADAM, CAMPR3 and AMPA prediction servers led to identification of the linear peptide with highly probable antimicrobial activity and further investigation of its antibacterial activity mechanism is promising. By using the dereplication algorithm, the peptide highly similar to non-ribosomal cyclic AMPs originally isolated from Staphylococcus epidermidis has been identified. This indicates that L. fermentum HF-D1 represents a novel strain producing antimicrobial peptides targeting P. aeruginosa and S. marcescens.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Bactérias/efeitos dos fármacos , Limosilactobacillus fermentum/metabolismo , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/farmacologia , Microbioma Gastrointestinal , Humanos
11.
Genes (Basel) ; 10(12)2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31766757

RESUMO

Plants constantly fight with stressful factors as high or low temperature, drought, soil salinity and flooding. Plants have evolved a set of stress response mechanisms, which involve physiological and biochemical changes that result in adaptive or morphological changes. At a molecular level, stress response in plants is performed by genetic networks, which also undergo changes in the process of evolution. The study of the network structure and evolution may highlight mechanisms of plants adaptation to adverse conditions, as well as their response to stresses and help in discovery and functional characterization of the stress-related genes. We performed an analysis of Arabidopsis thaliana genes associated with several types of abiotic stresses (heat, cold, water-related, light, osmotic, salt, and oxidative) at the network level using a phylostratigraphic approach. Our results show that a substantial fraction of genes associated with various types of abiotic stress is of ancient origin and evolves under strong purifying selection. The interaction networks of genes associated with stress response have a modular structure with a regulatory component being one of the largest for five of seven stress types. We demonstrated a positive relationship between the number of interactions of gene in the stress gene network and its age. Moreover, genes of the same age tend to be connected in stress gene networks. We also demonstrated that old stress-related genes usually participate in the response for various types of stress and are involved in numerous biological processes unrelated to stress. Our results demonstrate that the stress response genes represent the ancient and one of the fundamental molecular systems in plants.


Assuntos
Arabidopsis/genética , Redes Reguladoras de Genes , Estresse Fisiológico/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas
12.
Methods Mol Biol ; 1934: 1-20, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31256369

RESUMO

The increase in the number of Web-based resources on posttranslational modification sites (PTMSs) in proteins is accelerating. This chapter presents a set of computational protocols describing how to work with the Internet resources when dealing with PTMSs. The protocols are intended for querying in PTMS-related databases, search of the PTMSs in the protein sequences and structures, and calculating the pI and molecular mass of the PTM isoforms. Thus, the modern bioinformatics prediction tools make it feasible to express protein modification in broader quantitative terms.


Assuntos
Biologia Computacional/métodos , Internet , Processamento de Proteína Pós-Traducional , Proteínas , Software , Sequência de Aminoácidos , Bases de Dados de Proteínas , Peso Molecular , Proteínas/química , Proteínas/metabolismo , Ferramenta de Busca , Interface Usuário-Computador , Navegador
13.
BMC Genomics ; 20(1): 399, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31117933

RESUMO

BACKGROUND: The three epidemiologically important Opisthorchiidae liver flukes Opisthorchis felineus, O. viverrini, and Clonorchis sinensis, are believed to harbour similar potencies to provoke hepatobiliary diseases in their definitive hosts, although their populations have substantially different ecogeographical aspects including habitat, preferred hosts, population structure. Lack of O. felineus genomic data is an obstacle to the development of comparative molecular biological approaches necessary to obtain new knowledge about the biology of Opisthorchiidae trematodes, to identify essential pathways linked to parasite-host interaction, to predict genes that contribute to liver fluke pathogenesis and for the effective prevention and control of the disease. RESULTS: Here we present the first draft genome assembly of O. felineus and its gene repertoire accompanied by a comparative analysis with that of O. viverrini and Clonorchis sinensis. We observed both noticeably high heterozygosity of the sequenced individual and substantial genetic diversity in a pooled sample. This indicates that potency of O. felineus population for rapid adaptive response to control and preventive measures of opisthorchiasis is higher than in O. viverrini and C. sinensis. We also have found that all three species are characterized by more intensive involvement of trans-splicing in RNA processing compared to other trematodes. CONCLUSION: All revealed peculiarities of structural organization of genomes are of extreme importance for a proper description of genes and their products in these parasitic species. This should be taken into account both in academic and applied research of epidemiologically important liver flukes. Further comparative genomics studies of liver flukes and non-carcinogenic flatworms allow for generation of well-grounded hypotheses on the mechanisms underlying development of cholangiocarcinoma associated with opisthorchiasis and clonorchiasis as well as species-specific mechanisms of these diseases.


Assuntos
Cricetinae/parasitologia , Cyprinidae/parasitologia , Genoma Helmíntico , Genômica/métodos , Proteínas de Helminto/genética , Opistorquíase/epidemiologia , Opisthorchis/genética , Sequência de Aminoácidos , Animais , Clonorquíase/epidemiologia , Clonorquíase/genética , Clonorquíase/parasitologia , Clonorchis sinensis/genética , Opistorquíase/genética , Opistorquíase/parasitologia , Homologia de Sequência
14.
Planta ; 249(3): 839-847, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30446814

RESUMO

MAIN CONCLUSION: Density and length of leaf pubescence are important factors of diversity in the response to water deficiency among wheat genotypes. Many studies evidence an important protective value of leaf hairiness in plants, especially under the conditions of drought, thermal loads and increased solar radiation. However, the physiological and adaptive roles of such traits in cereals, including cultivated plants, have not been sufficiently studied to date. The aim of this work was to study the association of morphological characteristics of leaves with parameters of gas exchange and chlorophyll fluorescence in wheat lines carrying a genetically different leaf hairiness. Isogenic and inter-varietal substitution wheat lines were used, carrying various combinations of dominant and recessive alleles of the known genes. A quantitative assessment of the pubescence was carried out in contrasting watering conditions to establish the physiological role of this trait in adaptation to drought. With the help of a portable system for studying the gas exchange and chlorophyll fluorescence, ten parameters of photosynthesis were studied, as well as morphological features of leaves and shoot biomass. It was found that gas exchange parameters are inversely proportional to the density and length of trichomes. In drought conditions, the trichome density increased and the length of trichomes decreased under the observed decrease in the level of gas exchange. A similar dependence was observed for the level of non-photochemical quenching of chlorophyll fluorescence. Under optimal conditions, the poorly haired cultivars exhibited a higher biomass than the densely haired. However, under water deficiency they significantly reduced the biomass and showed a low value of the tolerance index.


Assuntos
Fotossíntese , Folhas de Planta/anatomia & histologia , Triticum/anatomia & histologia , Clorofila/metabolismo , Desidratação , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Característica Quantitativa Herdável , Triticum/genética , Triticum/fisiologia
15.
DNA Repair (Amst) ; 69: 24-33, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30032016

RESUMO

In protein evolution, functionally important intramolecular interactions, such as polar bridges or hydrophobic interfaces, tend to be conserved. We have analyzed coevolution of physicochemical properties in pairs of amino acid residues in the formamidopyrimidine-DNA glycosylase (Fpg) protein family, identified three conserved polar bridges (Arg54-Glu131, Gln234-Arg244, and Tyr170-Ser208 in the E. coli protein) located in known functional regions of the protein, and analyzed their roles by site-directed mutagenesis. The structure and molecular dynamic modeling showed that the coevolving pairs do not form isolated bridges but rather participate in tight local clusters of hydrogen bonds. The Arg54-Glu131 bridge, connecting the N- and C-terminal domains, was important for DNA binding, as its abolishment or even ion pair reversal inactivated Fpg and greatly decreased the enzyme's affinity for DNA. Mutations of the Gln234-Arg244 bridge, located at the base of the single Fpg ß-hairpin zinc finger, did not affect the activity but sharply decreased the melting temperature of the protein, with the bridge reversal partially restoring the thermal stability. Finally, Tyr170 mutation to Phe decreased Fpg binding but did not fully inactivate the protein, whereas Ser208 replacement with Ala had no effect; molecular dynamics showed that in both wild-type and S208 A Fpg, Tyr170 quickly re-orients to form an alternative set of hydrogen bonds. Thus, the coevolution analysis approach, combined with biochemical and computational studies, provides a powerful tool for understanding intramolecular interactions important for the function of DNA repair enzymes.


Assuntos
DNA-Formamidopirimidina Glicosilase/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Evolução Molecular , Simulação de Dinâmica Molecular , DNA/metabolismo , Reparo do DNA , DNA-Formamidopirimidina Glicosilase/química , DNA-Formamidopirimidina Glicosilase/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Cinética , Mutagênese Sítio-Dirigida , Conformação Proteica , Análise de Sequência de Proteína
16.
BMC Neurosci ; 19(Suppl 1): 16, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29745836

RESUMO

BACKGROUND: APOE Îµ4 allele is most common genetic risk factor for Alzheimer's disease (AD) and cognitive decline. However, it remains poorly understood why only some carriers of APOE Îµ4 develop AD and how ethnic variabilities in APOE locus contribute to AD risk. Here, to address the role of APOE haplotypes, we reassessed the diversity of APOE locus in major ethnic groups and in Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset on patients with AD, and subjects with mild cognitive impairment (MCI), and control non-demented individuals. RESULTS: We performed APOE gene haplotype analysis for a short block of five SNPs across the gene using the ADNI whole genome sequencing dataset. The compilation of ADNI data with 1000 Genomes identified the APOE ε4 linked haplotypes, which appeared to be distant for the Asian, African and European populations. The common European ε4-bearing haplotype is associated with AD but not with MCI, and the Africans lack this haplotype. Haplotypic inference revealed alleles that may confer protection against AD. By assessing the DNA methylation profile of the APOE haplotypes, we found that the AD-associated haplotype features elevated APOE CpG content, implying that this locus can also be regulated by genetic-epigenetic interactions. CONCLUSIONS: We showed that SNP frequency profiles within APOE locus are highly skewed to population-specific haplotypes, suggesting that the ancestral background within different sites at APOE gene may shape the disease phenotype. We propose that our results can be utilized for more specific risk assessment based on population descent of the individuals and on higher specificity of five site haplotypes associated with AD.


Assuntos
Doença de Alzheimer/genética , Apolipoproteínas E/genética , Haplótipos , Polimorfismo de Nucleotídeo Único , Doença de Alzheimer/etnologia , Povo Asiático/etnologia , Povo Asiático/genética , População Negra/etnologia , População Negra/genética , Metilação de DNA , Bases de Dados Factuais , Predisposição Genética para Doença , Humanos , População Branca/etnologia , População Branca/genética , Sequenciamento Completo do Genoma
17.
PLoS One ; 13(3): e0194464, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29596533

RESUMO

Multiple experimental data demonstrated that the core gene network orchestrating self-renewal and differentiation of mouse embryonic stem cells involves activity of Oct4, Sox2 and Nanog genes by means of a number of positive feedback loops among them. However, recent studies indicated that the architecture of the core gene network should also incorporate negative Nanog autoregulation and might not include positive feedbacks from Nanog to Oct4 and Sox2. Thorough parametric analysis of the mathematical model based on this revisited core regulatory circuit identified that there are substantial changes in model dynamics occurred depending on the strength of Oct4 and Sox2 activation and molecular complexity of Nanog autorepression. The analysis showed the existence of four dynamical domains with different numbers of stable and unstable steady states. We hypothesize that these domains can constitute the checkpoints in a developmental progression from naïve to primed pluripotency and vice versa. During this transition, parametric conditions exist, which generate an oscillatory behavior of the system explaining heterogeneity in expression of pluripotent and differentiation factors in serum ESC cultures. Eventually, simulations showed that addition of positive feedbacks from Nanog to Oct4 and Sox2 leads mainly to increase of the parametric space for the naïve ESC state, in which pluripotency factors are strongly expressed while differentiation ones are repressed.


Assuntos
Regulação da Expressão Gênica/fisiologia , Redes Reguladoras de Genes/fisiologia , Modelos Genéticos , Células-Tronco Embrionárias Murinas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Fatores de Transcrição/genética
18.
J Biomol Struct Dyn ; 36(1): 68-82, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-27924686

RESUMO

Interactions between protein domains and their position and movement relative to each other are essential for the stability and normal functioning of a protein molecule. Features of the movement of domains may define the mechanism of enzymatic reactions. Therefore, the description of this motion is an important task in the analysis of the structures and functions of multidomain proteins. In the current work, we investigated the influence of pressure and temperature on changes in the movement of the two domains of the protein Nip7, expressed by deep-water (Pyrococcus abyssi) and shallow-water (Pyrococcus furiosus) archaea. The results of the present study show that the interdomain interfaces of the Nip7 proteins of P. abyssi and P. furiosus are formed by stable hydrophobic interactions. It was shown that high pressure and high temperature significantly changed the orientation of domains in Nip7 proteins which perhaps was connected with functional features of these domains. It was found that increasing the pressure significantly changed the angle of rotation of these domains, to a greater extent in the shallow-water protein, while an increase in temperature slightly reduced the angle of rotation of these domains. Moreover, the results suggest that the type of motion of the domains under study is similar to shear motion.


Assuntos
Proteínas Arqueais/química , Domínios Proteicos , Pyrococcus abyssi/metabolismo , Pyrococcus furiosus/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sítios de Ligação/genética , Temperatura Alta , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Movimento (Física) , Pressão , Pyrococcus abyssi/genética , Pyrococcus furiosus/genética , Especificidade da Espécie
19.
BMC Plant Biol ; 17(Suppl 1): 182, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29143606

RESUMO

BACKGROUND: Some plant species have 'melanin-like' black seed pigmentation. However, the chemical and genetic nature of this 'melanin-like' black pigment have not yet been fully explored due to its complex structure and ability to withstand almost all solvents. Nevertheless, identification of genetic networks participating in trait formation is key to understanding metabolic processes involved in the expression of 'melanin-like' black seed pigmentation. The aim of the current study was to identify differentially expressed genes (DEGs) in barley near-isogenic lines (NILs) differing by allelic state of the Blp (black lemma and pericarp) locus. RESULTS: RNA-seq analysis of six libraries (three replicates for each line) was performed. A total of 957 genome fragments had statistically significant changes in expression levels between lines BLP and BW, with 632 fragments having increased expression levels in line BLP and 325 genome fragments having decreased expression. Among identified DEGs, 191 genes were recognized as participating in known pathways. Among these were metabolic pathways including 'suberin monomer biosynthesis', 'diterpene phytoalexins precursors biosynthesis', 'cutin biosynthesis', 'cuticular wax biosynthesis', and 'phenylpropanoid biosynthesis, initial reactions'. Differential expression was confirmed by real-time PCR analysis of selected genes. CONCLUSIONS: Metabolic pathways and genes presumably associated with black lemma and pericarp colour as well as Blp-associated resistance to oxidative stress and pathogens, were revealed. We suggest that the black pigmentation of lemmas and pericarps is related to increased level of phenolic compounds and their oxidation. The effect of functional Blp on the synthesis of ferulic acid and other phenolic compounds can explain the increased antioxidant capacity and biotic and abiotic stress tolerance of black-grained cereals. Their drought tolerance and resistance to diseases affecting the spike may also be related to cuticular wax biosynthesis. In addition, upregulated synthesis of phytoalexins, suberin and universal stress protein (USP) in lemmas and pericarps of the Blp carriers may contribute to their increased disease resistance. Further description of the DEGs haplotypes and study of their association with physiological characteristics may be useful for future application in barley pre-breeding.


Assuntos
Genes de Plantas , Hordeum/genética , RNA de Plantas , Alelos , Perfilação da Expressão Gênica , Biblioteca Gênica , Redes Reguladoras de Genes , Redes e Vias Metabólicas/genética , Estresse Oxidativo , Pigmentação/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA
20.
J Bioinform Comput Biol ; 15(2): 1650036, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27832721

RESUMO

The understanding of biological and molecular mechanisms providing survival of cells under extreme temperatures and pressures will help to answer fundamental questions related to the origin of life and to design of biotechnologically important enzymes with new properties. Here, we analyze amino acid sequences of the Nip7 proteins from 35 archaeal species to identify positions containing mutations specific to the hydrostatic pressure and temperature of organism's habitat. The number of such positions related to pressure change is much lower than related to temperature change. The results suggest that adaptation to temperature changes of the Nip7 protein cause more pronounced modifications in sequence and structure, than to the pressure changes. Structural analysis of residues at these positions demonstrated their involvement in salt-bridge formation, which may reflect the importance of protein structure stabilization by salt-bridges at extreme environmental conditions.


Assuntos
Proteínas Arqueais/química , Proteínas de Ligação a RNA/química , Adaptação Fisiológica , Substituição de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Domínio Catalítico , Modelos Moleculares , Proteínas de Ligação a RNA/metabolismo , Homologia de Sequência de Aminoácidos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...