Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Res Sq ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38699327

RESUMO

Background: In late 2021, Ghana was hit by a Yellow Fever outbreak that started in two (2) districts in the Savannah region and spread to several other Districts in (3) regions (Oti, Bono and Upper West).Yellow fever is endemic in Ghana. However, there is currently no structured vector control programme for the yellow vector, Aedes mosquitoes in Ghana. Knowledge of Aedes bionomics and insecticide susceptibility status is important to control the vectors. This study therefore sought todetermine Aedes vector bionomics and their insecticide resistance status during a yellow fever outbreak. Methods: The study was performed in two yellow fever outbreak sites (Wenchi, Larabanga) and two non-outbreak sites (Kpalsogu, Pagaza) in Ghana. Immature Aedes mosquitoes were sampled from water-holding containers in and around human habitations. The risk of disease transmission was determined in each site using stegomyia indices. Adult Aedes mosquitoes were sampled using Biogents Sentinel (BG) traps, Human Landing Catch (HLC), and Prokopack (PPK) aspirators. Phenotypic resistance was determined with WHO susceptibility tests using Aedes mosquitoes collected as larvae and reared into adults. Knockdown resistance (kdr) mutations were detected using allele-specific multiplex PCR. Results: Of the 2,664 immature Aedes sampled, more than 60% were found in car tyres. Larabanga, an outbreak site, was classified as a high-risk zone for the Yellow Fever outbreak (BI: 84%, CI: 26.4%). Out of 1,507 adult Aedes mosquitoes collected, Aedes aegypti was the predominant vector species (92%). A significantly high abundance of Aedes mosquitoes was observed during the dry season (61.2%) and outdoors (60.6%) (P < 0.001). Moderate to high resistance to deltamethrin was observed in all sites (33.75% to 70%). Moderate resistance to pirimiphos-methyl (65%) was observed in Kpalsogu. Aedesmosquitoes from Larabanga were susceptible (98%) to permethrin. The F1534C kdr, V1016I kdr and V410 kdr alleles were present in all the sites with frequencies between (0.05-0.92). The outbreak sites had significantly higher allele frequencies of F1534C and V1016I respectively compared to non-outbreak sites (P < 0.001). Conclusion: This study indicates that Aedes mosquitoes in Ghana pose a significant risk to public health, and there is a need for continuous surveillance to inform effective vector control strategies.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38746755

RESUMO

Aedes aegypti is an important vector of arboviral diseases including dengue and yellow fever. Despite the wide distribution of this mosquito species, there are limited data on the ecology of Ae. aegypti in Ghana. In this study, we report on the oviposition preference and the larval life tables of Ae. aegypti mosquitoes in Accra, Ghana. The oviposition preference of the mosquitoes to three habitat types (car tyres, drums and bowls) was measured by setting up ovitraps. We recorded the presence and abundance of larvae every 3 days. Two-hour-old Ae. aegypti larvae were introduced and raised in three habitat types to undertake larval life tables. The number of surviving larvae at each developmental stage was recorded daily until they emerged as adults. Car tyres showed a higher abundance of Ae. aegypti larvae (52.3%) than drums (32.5%) and bowls (15.1%) (ANOVA, F(2,159) = 18.79, P < 0.001). The mean development time of Ae. aegypti larvae was significantly lower in car tyres (7 ± 1 days) compared to that of bowls (9 ± 0.0 days) and drums (12.6 ± 1.5 days) (P = 0.024). The differences in pupation rates and emergence rates were not significant across the habitat types; however, the highest pupation rate was observed in bowls (0.92 ± 0.17) and the emergence rate was highest in tyres (0.84 ± 0.10). The proportion of first-instar larvae that survived to emergence was significantly higher in car tyres (0.84 ± 0.10) compared to that of bowls (0.72 ± 0.20) and drums (0.62 ± 0.20) (P = 0.009). No mortalities were observed after 9 days in car tyres, 10 days in bowls and 15 days in drums. The results confirm that discarded car tyres were the preferred habitat choice for the oviposition of gravid female Ae. aegypti mosquitoes and provide the best habitat conditions for larval development and survival. These findings are necessary for understanding the ecology of Ae. aegypti to develop appropriate strategies for their control in Ghana.

3.
Res Sq ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38464038

RESUMO

Backgrounds: The resurgence of Anopheles funestus, a dominant vector of human malaria in western Kenya was partly attributed to insecticide resistance. However, evidence on the molecular basis of pyrethroid resistance in western Kenya is limited. Noncoding RNAs (ncRNAs) form a vast class of RNAs that do not code for proteins and are ubiquitous in the insect genome. Here, we demonstrated that multiple ncRNAs could play a potential role in An. funestusresistance to pyrethroid in western Kenya. Materials and Methods: Anopheles funestus mosquitoes were sampled by aspiration methods in Bungoma, Teso, Siaya, Port Victoria and Kombewa in western Kenya. The F1 progenies were exposed to deltamethrin (0.05%), permethrin (0.75%), DDT (4%) and pirimiphos-methyl (0.25%) following WHO test guidelines. A synergist assay using piperonyl butoxide (PBO) (4%) was conducted to determine cytochrome P450s' role in pyrethroid resistance. RNA-seq was conducted on a combined pool of specimens that were resistant and unexposed, and the results were compared with those of the FANG susceptible strain. This approach aimed to uncover the molecular mechanisms underlying pyrethroid resistance. Results: Pyrethroid resistance was observed in all the sites with an average mortality rate of 57.6%. Port Victoria had the highest level of resistance to permethrin (MR=53%) and deltamethrin (MR=11%) pyrethroids. Teso had the lowest level of resistance to permethrin (MR=70%) and deltamethrin (MR=87%). Resistance to DDT was observed only in Kombewa (MR=89%) and Port Victoria (MR=85%). A full susceptibility to P-methyl (0.25%) was observed in all the sites. PBO synergist assay revealed high susceptibility (>98%) to the pyrethroids in all the sites except for Port Victoria (MR=96%, n=100). Whole transcriptomic analysis showed that most of the gene families associated with pyrethroid resistance comprised non-coding RNAs (67%), followed by imipenemase (10%), cytochrome P450s (6%), cuticular proteins (5%), olfactory proteins (4%), glutathione S-transferases (3%), UDP-glycosyltransferases (2%), ATP-binding cassettes (2%) and carboxylesterases(1%). Conclusions: This study unveils the molecular basis of insecticide resistance in An. funestus in western Kenya, highlighting for the first time the potential role of non-coding RNAs in pyrethroid resistance. Targeting non-coding RNAs for intervention development could help in insecticide resistance management.

4.
PLoS One ; 19(2): e0298088, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38335209

RESUMO

BACKGROUND: Malaria is a common and severe public health problem in Ghana and largely responsible for febrile symptoms presented at health facilities in the country. Other infectious diseases, including COVID-19, may mimic malaria due to their shared non-specific symptoms such as fever and headache thus leading to misdiagnosis. This study therefore investigated COVID-19 among patients presenting with malaria-like symptoms at Korle-Bu Polyclinic, Accra, Ghana. METHODS: This study enrolled 300 patients presenting with malaria-like symptoms aged ≥18yrs. After consent was obtained from study patients, two to three millilitres of whole blood, nasopharyngeal and oropharyngeal swab samples, were collected for screening of Plasmodium falciparum using malaria rapid diagnostic test, microscopy and nested PCR, and SARS-CoV-2 using SARS-CoV-2 antigen test and Real-time PCR, respectively. The plasma and whole blood were also used for COVID-19 antibody testing and full blood counts using hematological analyser. SARS-CoV-2 whole genome sequencing was performed using MinIon sequencing. RESULTS: The prevalence of malaria by microscopy, RDT and nested PCR were 2.3%, 2.3% and 2.7% respectively. The detection of SARS-CoV-2 by COVID-19 Rapid Antigen Test and Real-time PCR were 8.7% and 20% respectively. The Delta variant was reported in 23 of 25 SARS-CoV-2 positives with CT values below 30. Headache was the most common symptom presented by study participants (95%). Comorbidities reported were hypertension, asthma and diabetes. One hundred and thirteen (37.8%) of the study participants had prior exposure to SARS CoV-2 and (34/51) 66.7% of Astrazeneca vaccinated patients had no IgG antibody. CONCLUSION: It may be difficult to use clinical characteristics to distinguish between patients with COVID-19 having malaria-like symptoms. Detection of IgM using RDTs may be useful in predicting CT values for SARS-CoV-2 real-time PCR and therefore transmission.


Assuntos
COVID-19 , Malária , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , SARS-CoV-2/genética , Teste para COVID-19 , Gana/epidemiologia , Malária/diagnóstico , Malária/epidemiologia , Reação em Cadeia da Polimerase em Tempo Real , Cefaleia , Atenção Primária à Saúde , Sensibilidade e Especificidade
5.
Malar J ; 23(1): 40, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317164

RESUMO

BACKGROUND: Artemisinin-based combination therapy (ACT) has been effective in the supervised treatment of uncomplicated malaria in Ghana. Since ACT usage is primarily unsupervised, this study aimed to determine the effectiveness of artemether-lumefantrine (AL) for treating malaria patients in two transmission settings in Ghana. METHODS: Eighty-four individuals with uncomplicated Plasmodium falciparum malaria were recruited from Lekma Hospital (LH) in Accra (low-transmission area; N = 28), southern Ghana, and King's Medical Centre (KMC) in Kumbungu (high-transmission area; N = 56), northern Ghana. Participants were followed up for 28 days after unsupervised treatment with AL. The presence of asexual parasites was determined by microscopic examination of Giemsa-stained blood smears. Plasmodium species identification was confirmed using species-specific primers targeting the 18S rRNA gene. Parasite recrudescence or reinfection was determined by genotyping the Pfmsp 1 and Pfmsp 2 genes. RESULTS: After AL treatment, 3.6% (2/56) of the patients from KMC were parasitaemic on day 3 compared to none from the LH patients. One patient from KMC with delayed parasite clearance on day 3 remained parasite-positive by microscopy on day 7 but was parasite-free by day 14. While none of the patients from LH experienced parasite recurrence during the 28-day follow-up, three and two patients from KMC had recurrent parasitaemia on days 21 and 28, respectively. Percentage reduction in parasite densities from day 1, 2, and 3 for participants from the KMC was 63.2%, 89.5%, and 84.5%. Parasite densities for participants from the LH reduced from 98.2%, 99.8% on day 1, and 2 to 100% on day 3. The 28-day cumulative incidence rate of treatment failure for KMC was 12.8% (95% confidence interval: 1.9-23.7%), while the per-protocol effectiveness of AL in KMC was 89.47%. All recurrent cases were assigned to recrudescence after parasite genotyping by Pfmsp 1 and Pfmsp 2. CONCLUSION: While AL is efficacious in treating uncomplicated malaria in Ghana, when taken under unsupervised conditions, it showed an 89.4% PCR-corrected cure rate in northern Ghana, which is slightly below the WHO-defined threshold.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Humanos , Combinação Arteméter e Lumefantrina/uso terapêutico , Antimaláricos/uso terapêutico , Gana , Artemisininas/uso terapêutico , Combinação de Medicamentos , Artemeter/uso terapêutico , Malária Falciparum/tratamento farmacológico , Recidiva , Parasitemia/tratamento farmacológico , Etanolaminas/uso terapêutico , Fluorenos/uso terapêutico , Plasmodium falciparum/genética
6.
Emerg Infect Dis ; 30(3): 605-608, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316032

RESUMO

The invasive Anopheles stephensi mosquito has rapidly expanded in range in Africa over the past decade. Consistent with World Health Organization guidelines, routine entomologic surveillance of malaria vectors in Accra, Ghana, now includes morphologic and molecular surveillance of An. stephensi mosquitoes. We report detection of An. stephensi mosquitoes in Ghana.


Assuntos
Anopheles , Malária , Animais , Gana/epidemiologia , Mosquitos Vetores , Malária/epidemiologia
7.
Malar J ; 23(1): 8, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178145

RESUMO

Africa and the United States are both large, heterogeneous geographies with a diverse range of ecologies, climates and mosquito species diversity which contribute to disease transmission and nuisance biting. In the United States, mosquito control is nationally, and regionally coordinated and in so much as the Centers for Disease Control (CDC) provides guidance, the Environmental Protection Agency (EPA) provides pesticide registration, and the states provide legal authority and oversight, the implementation is usually decentralized to the state, county, or city level. Mosquito control operations are organized, in most instances, into fully independent mosquito abatement districts, public works departments, local health departments. In some cases, municipalities engage independent private contractors to undertake mosquito control within their jurisdictions. In sub-Saharan Africa (SSA), where most vector-borne disease endemic countries lie, mosquito control is organized centrally at the national level. In this model, the disease control programmes (national malaria control programmes or national malaria elimination programmes (NMCP/NMEP)) are embedded within the central governments' ministries of health (MoHs) and drive vector control policy development and implementation. Because of the high disease burden and limited resources, the primary endpoint of mosquito control in these settings is reduction of mosquito borne diseases, primarily, malaria. In the United States, however, the endpoint is mosquito control, therefore, significant (or even greater) emphasis is laid on nuisance mosquitoes as much as disease vectors. The authors detail experiences and learnings gathered by the delegation of African vector control professionals that participated in a formal exchange programme initiated by the Pan-African Mosquito Control Association (PAMCA), the University of Notre Dame, and members of the American Mosquito Control Association (AMCA), in the United States between the year 2021 and 2022. The authors highlight the key components of mosquito control operations in the United States and compare them to mosquito control programmes in SSA countries endemic for vector-borne diseases, deriving important lessons that could be useful for vector control in SSA.


Assuntos
Malária , Controle de Mosquitos , Animais , Estados Unidos , Malária/epidemiologia , África Subsaariana , Ecologia , Vetores de Doenças , Mosquitos Vetores
8.
Parasit Vectors ; 17(1): 16, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195546

RESUMO

BACKGROUND: A significant decrease in malaria morbidity and mortality has been attained using long-lasting insecticide-treated nets and indoor residual spraying. Selective pressure from these control methods influences changes in vector bionomics and behavioural pattern. There is a need to understand how insecticide resistance drives behavioural changes within vector species. This study aimed to determine the spatio-temporal dynamics and biting behaviour of malaria vectors in different ecological zones in Ghana in an era of high insecticide use for public health vector control. METHODS: Adult mosquitoes were collected during the dry and rainy seasons in 2017 and 2018 from five study sites in Ghana in different ecological zones. Indoor- and outdoor-biting mosquitoes were collected per hour from 18:00 to 06:00 h employing the human landing catch (HLC) technique. Morphological and molecular species identifications of vectors were done using identification keys and PCR respectively. Genotyping of insecticide-resistant markers was done using the TaqMan SNP genotyping probe-based assays. Detection of Plasmodium falciparum sporozoites was determined using PCR. RESULTS: A total of 50,322 mosquitoes belonging to four different genera were collected from all the study sites during the sampling seasons in 2017 and 2018. Among the Anophelines were Anopheles gambiae s.l. 93.2%, (31,055/33,334), An. funestus 2.1%, (690/33,334), An. pharoensis 4.6%, (1545/33,334), and An. rufipes 0.1% (44/33,334). Overall, 76.4%, (25,468/33,334) of Anopheles mosquitoes were collected in the rainy season and 23.6%, (7866/33,334) in the dry season. There was a significant difference (Z = 2.410; P = 0.0160) between indoor-biting (51.1%; 15,866/31,055) and outdoor-biting An. gambiae s.l. (48.9%; 15,189/31,055). The frequency of the Vgsc-1014F mutation was slightly higher in indoor-biting mosquitoes (54.9%) than outdoors (45.1%). Overall, 44 pools of samples were positive for P. falciparum CSP giving an overall sporozoite rate of 0.1%. CONCLUSION: Anopheles gambiae s.l. were more abundant indoors across all ecological zones of Ghana. The frequency of G119S was higher indoors than outdoors from all the study sites, but with higher sporozoite rates in outdoor mosquitoes in Dodowa and Kpalsogu. There is, therefore, an urgent need for a supplementary malaria control intervention to control outdoor-biting mosquitoes.


Assuntos
Anopheles , Inseticidas , Malária Falciparum , Malária , Adulto , Humanos , Animais , Anopheles/genética , Malária/prevenção & controle , Gana , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mosquitos Vetores/genética , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle
9.
Malar J ; 23(1): 12, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195484

RESUMO

BACKGROUND: Clothianidin, an insecticide with a novel mode of action, has been deployed in the annual indoor residual spraying programme in northern Ghana since March 2021. To inform pragmatic management strategies and guide future studies, baseline data on local Anopheles gambiae sensu lato (s.l.) susceptibility to the clothianidin insecticide were collected in Kpalsogu, a village in the Northern region, Ghana. METHODS: Phenotypic susceptibility of An. gambiae mosquitoes to clothianidin was assessed using the World Health Organization (WHO) insecticide resistance monitoring bioassay. The WHO cone bioassays were conducted on mud and cement walls sprayed with Sumishield 50 wettable granules (WG) (with clothianidin active ingredient). Daily mortalities were recorded for up to 7 days to observe for delayed mortalities. Polymerase chain reaction (PCR) technique was used to differentiate the sibling species of the An. gambiae complex and also for the detection of knock down resistance genes (kdr) and the insensitive acetylcholinesterase mutation (ace-1). RESULTS: The WHO susceptibility bioassay revealed a delayed killing effect of clothianidin. Mosquitoes exposed to the cone bioassays for 5 min died 120 h after exposure. Slightly higher mortalities were observed in mosquitoes exposed to clothianidin-treated cement wall surfaces than mosquitoes exposed to mud wall surfaces. The kdr target-site mutation L1014F occurred at very high frequencies (0.89-0.94) across all vector species identified whereas the ace-1 mutation occurred at moderate levels (0.32-0.44). Anopheles gambiae sensu stricto was the most abundant species observed at 63%, whereas Anopheles arabiensis was the least observed at 9%. CONCLUSIONS: Anopheles gambiae s.l. mosquitoes in northern Ghana were susceptible to clothianidin. They harboured kdr mutations at high frequencies. The ace-1 mutation occurred in moderation. The results of this study confirm that clothianidin is an effective active ingredient and should be utilized in malaria vector control interventions.


Assuntos
Anopheles , Inseticidas , Malária , Animais , Anopheles/genética , Inseticidas/farmacologia , Acetilcolinesterase , Gana , Mosquitos Vetores
10.
bioRxiv ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38076990

RESUMO

The invasive Anopheles stephensi mosquito has been rapidly expanding in range in Africa over the last decade, spreading from the Indian sub-continent to several East African countries (Djibouti, Ethiopia, Sudan, Somalia and Kenya) and now in West Africa, Nigeria. The rapid expansion of this invasive vector poses a major threat to current malaria control and elimination efforts. In line with the WHO's strategy to stop the spread of this invasive species by enhancing surveillance and control measures in Africa, we incorporated morphological and molecular surveillance of An. stephensi into routine entomological surveillance of malaria vectors in the city of Accra, Ghana. Here, we report on the first detection of An. stephensi in Ghana. An. stephensi mosquitoes were confirmed using PCR and sequencing of the ITS2 regions. These findings highlight the urgent need for increased surveillance and response strategies to mitigate the spread of An. stephensi in Ghana.

11.
BMC Infect Dis ; 23(1): 801, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974079

RESUMO

Malaria is a significant global health concern, with a majority of cases in Sub-Saharan African nations. Numerous antimalarial drugs have been developed to counter the rampant prevalence of Plasmodium falciparum malaria. Artemisinin-based Combination Therapy (ACT) has served as the primary treatment of uncomplicated malaria in Ghana since 2005. However, a growing concern has emerged due to the escalating reports of ACT resistance, particularly in Southeast Asia, and its encroachment into Africa. Specifically, mutations in the Kelch propeller domain on chromosome 13 (Pfk13) have been linked to ACT resistance. Yet, our understanding of mutation prevalence in Africa remains largely uncharted. In this study, we compared Pfk13 sequences obtained from 172 P. falciparum samples across three ecological and transmission zones in Ghana. We identified 27 non-synonymous mutations among these sequences, of which two of the mutations, C580Y (found in two samples from the central region) and Y493H (found in one sample from the north), had previously been validated for their association with artemisinin resistance, a phenomenon widespread in Southeast Asia. The Pfk13 gene diversity was most pronounced in the northern savannah than the central forest and south coastal regions, where transmission rates are lower. The observed mutations were not significantly associated with geographical regions, suggesting a frequent spread of mutations across the country. The ongoing global surveillance of artemisinin resistance remains pivotal, and our findings provides insights into the potential spread of resistant parasites in West Africa. Furthermore, the identification of novel codon mutations in this study raises their potential association to ACT resistance, warranting further investigation through in vitro assays to ascertain their functional significance.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Humanos , Plasmodium falciparum/genética , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Gana/epidemiologia , Resistência a Medicamentos/genética , Proteínas de Protozoários/genética , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Polimorfismo Genético , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Mutação
12.
Parasit Vectors ; 16(1): 376, 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37864217

RESUMO

BACKGROUND: Designing, implementing, and upscaling of effective malaria vector control strategies necessitates an understanding of when and where transmission occurs. This study assessed the biting patterns of potentially infectious malaria vectors at various hours, locations, and associated human behaviors in different ecological settings in western Kenya. METHODS: Hourly indoor and outdoor catches of human-biting mosquitoes were sampled from 19:00 to 07:00 for four consecutive nights in four houses per village. The human behavior study was conducted via questionnaire surveys and observations. Species within the Anopheles gambiae complex and Anopheles funestus group were distinguished by polymerase chain reaction (PCR) and the presence of Plasmodium falciparum circumsporozoite proteins (CSP) determined by enzyme-linked immunosorbent assay (ELISA). RESULTS: Altogether, 2037 adult female anophelines were collected comprising the An. funestus group (76.7%), An. gambiae sensu lato (22.8%), and Anopheles coustani (0.5%). PCR results revealed that Anopheles arabiensis constituted 80.5% and 79% of the An. gambiae s.l. samples analyzed from the lowland sites (Ahero and Kisian, respectively). Anopheles gambiae sensu stricto (hereafter An. gambiae) (98.1%) was the dominant species in the highland site (Kimaeti). All the An. funestus s.l. analyzed belonged to An. funestus s.s. (hereafter An. funestus). Indoor biting densities of An. gambiae s.l. and An. funestus exceeded the outdoor biting densities in all sites. The peak biting occurred in early morning between 04:30 and 06:30 in the lowlands for An. funestus both indoors and outdoors. In the highlands, the peak biting of An. gambiae occurred between 01:00 and 02:00 indoors. Over 50% of the study population stayed outdoors from 18:00 to 22:00 and woke up at 05:00, coinciding with the times when the highest numbers of vectors were collected. The sporozoite rate was higher in vectors collected outdoors, with An. funestus being the main malaria vector in the lowlands and An. gambiae in the highlands. CONCLUSION: This study shows heterogeneity of anopheline distribution, high outdoor malaria transmission, and early morning peak biting activity of An. funestus when humans are not protected by bednets in the lowland sites. Additional vector control efforts targeting the behaviors of these vectors, such as the use of non-pyrethroids for indoor residual spraying and spatial repellents outdoors, are needed.


Assuntos
Anopheles , Mordeduras e Picadas , Malária , Animais , Humanos , Feminino , Malária/epidemiologia , Malária/prevenção & controle , Ecossistema , Mosquitos Vetores , Quênia/epidemiologia , Comportamento Alimentar
13.
Res Sq ; 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37693506

RESUMO

Background: The Aedes aegyptimosquito is an important vector of arboviral diseases including dengue and yellow fever. Despite the wide distribution of the Aedes aegypti mosquito, there is limited data on the ecology of Aedes aegypti mosquitoes in Ghana. In this study, we report on the oviposition preference and the larval life table of Aedes aegypti mosquitoes in Accra, Ghana. Methods: The oviposition preference of Aedesmosquitoes to three habitat types (tyres, drums and bowls) was measured by setting up ovitraps. Ovitraps were checked for the presence of Aedes larvae every 3 days. The presence and number of larvae were recorded for each habitat type. Two-hour-old Aedes aegypti larvae were introduced into and raised in these three habitat types to undertake larval life tables. The number of surviving larvae at each developmental stage was recorded daily until they emerge as adults. Results: Car tyres showed a high abundance of Aedeslarvae (52.33%) than drums (32.49%) and bowls (15.18%) (ANOVA, F _ 18.79, df _ 2, 159, P < 0.001). The mean development time of Ae. aegypti larvae was significantly lower in car tyres (7 ± 1 days) compared to that of bowls (9 ± 0.0 days) and drums (12.6 ± 1.5 days) (H (2) = 7.448, P = 0.024). The differences in pupation rates and emergence rates were not significant across the habitat types, however, the highest pupation rate was observed in bowls (0.92) and the emergence rate was highest in tyres (0.84). The proportion of first-instar larvae that survived to adults was significantly higher in tyres with a shorter survival time (0.84; 9 days) compared to that of bowls (0.72; 10 days) and drums (0.62 ± 0.2; 13 days) (H (2) = 2.822, P= 0.009). Conclusion: The results confirm that discarded car tyres were the preferred habitat choice for the oviposition of gravid female Aedes aegypti mosquitoes and provide the best habitat condition for larval development and survival. These findings are necessary for understanding the ecology of Aedes mosquitoes to develop appropriate strategies for their control in Ghana.

14.
BMC Public Health ; 23(1): 1784, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710219

RESUMO

BACKGROUND: Neglected tropical diseases (NTDs) are a major public health burden which mainly affects poor populations living in tropical environments and hard-to-reach areas. The study sought to examine coverage of preventive efforts, and case surveillance for NTDs in hard-to-reach communities in Ghana. METHODS: The study investigated treatment efforts for lymphatic filariasis (LF), and onchocerciasis and schistosomiasis/soil transmitted helminths (SCH/STH) at household level, in difficult-to-access communities in Ghana. A total of 621 households were sampled from 6 communities in the Western, Oti and Greater Accra regions. RESULTS: Over 95% of the households surveyed were covered under mass drug administration (MDA) campaigns for lymphatic filariasis (LF) and onchocerciasis. More than 80% of households had received at least two visits by community drug distributors under the MDA campaigns in the last two years preceding the study. In addition, over 90% of households in the LF and onchocerciasis endemic communities had at least one member using anthelminthic medications under the MDA campaigns in the 12 months preceding the study. However, households where no member had taken anthelminthic medications in 12 months preceding the study were over 6 times likely to have someone in the household with LF. CONCLUSIONS: This study determined that SCH/STH, LF and onchocerciasis are of serious public health concern in some communities in Ghana. There is an urgent need for holistic practical disease control plan involving both financial and community support to ensure total control of NTDs in difficult-to-access communities is achieved.


Assuntos
Filariose Linfática , Oncocercose , Humanos , Gana/epidemiologia , Filariose Linfática/tratamento farmacológico , Filariose Linfática/epidemiologia , Filariose Linfática/prevenção & controle , Oncocercose/tratamento farmacológico , Oncocercose/epidemiologia , Oncocercose/prevenção & controle , Administração Massiva de Medicamentos , Doenças Negligenciadas/epidemiologia , Doenças Negligenciadas/prevenção & controle , Solo
15.
BMC Infect Dis ; 23(1): 460, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430222

RESUMO

INTRODUCTION: The success of mass drug administration (MDA) campaigns to control and eliminate neglected tropical diseases (NTDs) in Ghana depends, to a large extent, on the essential role community drug distributors (CDDs) play. This study aimed to investigate community's perceptions of CDDs' roles, impact of CDDs' work, challenges faced by CDDs, and views on resources required to enhance CDDs' work to sustain MDA campaigns. METHODS: A cross-sectional qualitative study employing the use of focus group discussions (FGDs) with community members and CDDs in selected NTD endemic communities together with individual interviews with district health officers (DHOs) was conducted. We interviewed 104 people aged 18 and over, purposively selected, through eight individual interviews, and 16 focus group discussions. RESULTS: Participants in the community FGDs noted that health education and the distribution of drugs were the main roles of CDDs. Participants also perceived that the work of CDDs had prevented the onset of NTDs, treated symptoms of NTDs, and generally reduced the incidence of infections. In the interviews with CDDs and DHOs, lack of cooperation/non-compliance by community members, demands by community members, lack of working resources and low financial motivation were mentioned as the main challenges to the work of CDDs. Moreover, the provision of logistics and financial motivation for CDDs were identified as factors that will enhance their work. CONCLUSIONS: Incorporating more attractive schemes will incentivise CDDs to improve output. Addressing the challenges highlighted is an important step for the work of CDDS to be effective in controlling NTDs in difficult-to-access communities in Ghana.


Assuntos
Educação em Saúde , Administração Massiva de Medicamentos , Humanos , Adolescente , Adulto , Gana/epidemiologia , Estudos Transversais , Grupos Focais , Doenças Negligenciadas/tratamento farmacológico , Doenças Negligenciadas/epidemiologia , Doenças Negligenciadas/prevenção & controle
16.
Res Sq ; 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37214835

RESUMO

Introduction: Malaria and intestinal parasite infection are common in developing countries. These Parasites causes anaemia and malnutrition mostly in children. For this reason, it is important to study these infections and their effects in order to monitor interventions to control them. This study aims to determine prevalence of malaria and intestinal parasite infections and their association with nutritional status among febrile children in Accra, Ghana. Methods: The study was conducted among febrile children aged 6 months to 5 years attending three health facilities in Accra from May to October, 2022. A total of 315 children were selected for the study. Anthropometric measurement was done for each participant. Blood and stool samples were collected for investigation. Thick and thin blood smears stained with 10% Giemsa were prepared and examined for Plasmodium parasite using microscopy. Stool samples were processed using direct wet mount and formalin-ether concentration method and examined for intestinal parasites using microscopy. Haemoglobin concentration was measured using automatic haematology analyzer. Results: A total of 24% (76/315) were positive for malaria. Plasmodium falciparum accounted for 77.6% (59/76) of parasitaemia, whereas Plasmodium malariae was 22.4% (17/76). Prevalence of intestinal parasite infection was 10.7% (34/315). Giardia lamblia accounted for 17/315 (5.3%) of the entire children, followed by Ascaris lumbricoides 8/315 (2.5%), Hookworm 6/315 (1.9%) and Trichuris trichiura 3/315 (0.9%). A total of 15/315 (5%) of the participants had co-infection of malaria and intestinal parasite infection. Prevalence of anaemia, malnutrition, stunting, wasting and underweight were (72%), (30.7%), (16.2%), (24.4%) and (57.1%) respectively. Malaria was significantly associated with anaemia (p = 0.000) and underweight (p = 0.013). Ascaris lumbricoides was significantly associated with wasting (p = 0.010). Giardia lamblia was significantly association with malnutrition (p = 0.000) and Stunting (p = 0.000), whereas Hookworm was found to be significantly associated with anaemia (p = 0.021). Conclusion: Prevalence of IPI in this study was less than previously reported, most likely due to regular deworming of most of the children. However, Malaria and intestinal parasitic infection were significantly associated with anaemia and malnutrition including wasting, stunting, and underweight.

17.
Res Sq ; 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37090522

RESUMO

Background: Designing, implementing, and upscaling effective malaria vector control strategies necessitates understanding of when and where transmission occurs. This study assessed the biting patterns of potentially infectious malaria vectors at various hours, locations, and human behavior in different ecological settings in western Kenya. Methods: Hourly indoor and outdoor catches of human-biting mosquitoes were sampled from 1900 to 0700 hours for four consecutive nights in four houses per village using human landing collection method. The nocturnal biting activities of each Anopheles species were expressed as the mean number of mosquitoes landing per person per hour. The human behavior study was conducted via observations and questionnaire surveys. Species within Anopheles gambiae and Anopheles funestus complexes were differentiated by polymerase chain reaction (PCR) and the presence of Plasmodium falciparumcircumsporozoite proteins (CSP) determined by enzyme-linked immunosorbent assay (ELISA). Results: Altogether, a total of 2,037 adult female Anophelines were collected comprising of An. funestus s.l. (76.7%), An.gambiae s.l.(22.8%) and Anopheles coustani (0.5%). Overall, Anopheles funestus was the predominant species collected in Ahero (96.7%) while An. gambiae s.l was dominant in Kisian (86.6%) and Kimaeti (100%) collections. PCR results revealed that An. arabiensis constituted 80.5% and 79% of the An.gambiae s.l samples analysed from Ahero and Kisian respectively. An. gambiae s.s (hereafter An.gambiae) (98.1%) was the dominant species collected in Kimaeti. All the An. funestus s.l samples analysed belonged to An. funestus s.s (hereafter An. funestus). Indoor biting densities of Anopheles gambiae and An. funestus exceeded the outdoor biting densities in all sites. The peak biting occurred early morning between 0430-0630 hours in the lowlands for An. funestus both indoors and outdoors. In the highlands (Kimaeti), the peak biting of An.gambiae occurred between 0100-0200 hours indoors. Over 50% of the study population stayed outdoors from 1800 to 2200 hours and woke up at 0500 hours coinciding with the times highest numbers of vectors were collected. The sporozoite rate was higher in vectors collected outdoors, with An. funestus being the main malaria vector in the lowlands and An. gambiaein the highland. Conclusion: The study shows heterogeneity of Anophelines distribution, high outdoor malaria transmission, and peak biting activity by An. funestus (early morning) when humans are not protected by bed nets in the lowland sites. Additional vector control efforts targeting the behaviors of these vectors i.e using non-pyrethroids-based indoor residual spraying and spatial repellents outdoors are needed.

18.
Parasit Vectors ; 16(1): 135, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072865

RESUMO

BACKGROUND: Outbreaks of Aedes-borne arboviral diseases are becoming rampant in Africa. In Ghana, there is no organized arboviral control programme with interventions restricted to mitigate outbreaks. Insecticide application is a crucial part of outbreak responses and future preventative control measures. Thus, knowledge of the resistance status and underlying mechanisms of Aedes populations is required to ensure optimal insecticide choices. The present study assessed the insecticide resistance status of Aedes aegypti populations from southern Ghana (Accra, Tema and Ada Foah) and northern Ghana (Navrongo) respectively. METHODS: Phenotypic resistance was determined with WHO susceptibility tests using Ae. aegypti collected as larvae and reared into adults. Knockdown resistance (kdr) mutations were detected using allele-specific PCR. Synergist assays were performed with piperonyl butoxide (PBO) to investigate the possible involvement of metabolic mechanisms in resistance phenotypes. RESULTS: Resistance to DDT was moderate to high across sites (11.3 to 75.8%) and, for the pyrethroids deltamethrin and permethrin, moderate resistance was detected (62.5 to 88.8%). The 1534C kdr and 1016I kdr alleles were common in all sites (0.65 to 1) and may be on a trajectory toward fixation. In addition, a third kdr mutant, V410L, was detected at lower frequencies (0.03 to 0.31). Pre-exposure to PBO significantly increased the susceptibility of Ae. aegypti to deltamethrin and permethrin (P < 0.001). This indicates that in addition to kdr mutants, metabolic enzymes (monooxygenases) may be involved in the resistance phenotypes observed in the Ae. aegypti populations in these sites. CONCLUSION: Insecticide resistance underpinned by multiple mechanisms in Ae. aegypti indicates the need for surveillance to assist in developing appropriate vector control strategies for arboviral disease control in Ghana.


Assuntos
Aedes , Inseticidas , Piretrinas , Animais , Inseticidas/farmacologia , Permetrina/farmacologia , Resistência a Inseticidas/genética , Aedes/genética , Gana , Mosquitos Vetores/genética , Piretrinas/farmacologia , Mutação
19.
Malar J ; 22(1): 74, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864430

RESUMO

BACKGROUND: Mosquito larval source management (LSM) is a valuable additional tool for malaria vector control. Understanding the characteristics of mosquito larval habitats and its ecology in different land use types can give valuable insight for an effective larval control strategy. This study determined the stability and productivity of potential anopheline larval habitats in two different ecological sites: Anyakpor and Dodowa in southern Ghana. METHODS: A total of 59 aquatic habitats positive for anopheline larvae were identified, and sampled every two weeks for a period of 30 weeks using a standard dipping method. Larvae were collected using standard dippers and were raised in the insectary for identification. Sibling species of the Anopheles gambiae sensu lato (s.l.) were further identified by polymerase chain reaction. The presence of larval habitats, their stability and larvae positive habitats were compared between the two sites using Mann-Whitney U and the Kruskal-Wallis test. Factors affecting the presence of An. gambiae larvae and physicochemical properties at the sites were determined using multiple logistic regression analysis and Spearman's correlation. RESULTS: Out of a total of 13,681 mosquito immatures collected, 22.6% (3095) were anophelines and 77.38% (10,586) were culicines. Out of the 3095 anophelines collected, An. gambiae s.l. was predominant (99.48%, n = 3079), followed by Anopheles rufipes (0.45%, n = 14), and Anopheles pharoensis (0.064%, n = 2). Sibling species of the An. gambiae consisted of Anopheles coluzzii (71%), followed by An. gambiae s.s. (23%), and Anopheles melas (6%). Anopheles mean larval density was highest in wells [6.44 (95% CI 5.0-8.31) larvae/dip], lowest in furrows [4.18 (95% CI 2.75-6.36) larvae/dip] and man-made ponds [1.20 (95% CI 0.671-2.131) larvae/dip].The results also revealed habitat stability was highly dependent on rainfall intensity, and Anopheles larval densities were also dependent on elevated levels of pH, conductivity and TDS. CONCLUSION: The presence of larvae in the habitats was dependent on rainfall intensity and proximity to human settlements. To optimize the vector control measures of malaria interventions in southern Ghana, larval control should be focused on larval habitats that are fed by underground water, as these are more productive habitats.


Assuntos
Anopheles , Malária , Animais , Humanos , Gana , Mosquitos Vetores , Larva
20.
Insects ; 14(3)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36975958

RESUMO

The mitochondrial marker, COII, was employed to assess the genetic structure and diversity of Anopheles funestus, a very important malaria vector in Africa that adapt and colonize different ecological niches in western Kenya. Mosquitoes were collected using mechanical aspirators in four areas (Bungoma, Port Victoria, Kombewa, and Migori) in western Kenya. Following morphological identification, PCR was used to confirm the species. The COII gene was amplified, sequenced, and analyzed to determine genetic diversity and population structure. A total of 126 (Port Victoria-38, Migori-38, Bungoma-22, and Kombewa-28) sequences of COII were used for population genetic analysis. Anopheles funestus had a high haplotype diversity (Hd = 0.97 to 0.98) but low nucleotide diversity (Π = 0.004 to 0.005). The neutrality test revealed negative Tajima's D and Fs values indicating an excess of low-frequency variation. This could be attributed to either population expansion or negative selection pressure across all the populations. No genetic or structural differentiation (Fst = -0.01) and a high level of gene flow (Gamma St, Nm = 17.99 to 35.22) were observed among the populations. Population expansion suggests the high adaptability of this species to various ecological requirements, hence sustaining its vectorial capacity and malaria transmission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...