Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 1576, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949076

RESUMO

Trypanosoma brucei is a protozoan parasite that causes human African trypanosomiasis. Its major surface antigen VSG is expressed from subtelomeric loci in a strictly monoallelic manner. We previously showed that the telomere protein TbRAP1 binds dsDNA through its 737RKRRR741 patch to silence VSGs globally. How TbRAP1 permits expression of the single active VSG is unknown. Through NMR structural analysis, we unexpectedly identify an RNA Recognition Motif (RRM) in TbRAP1, which is unprecedented for RAP1 homologs. Assisted by the 737RKRRR741 patch, TbRAP1 RRM recognizes consensus sequences of VSG 3'UTRs in vitro and binds the active VSG RNA in vivo. Mutating conserved RRM residues abolishes the RNA binding activity, significantly decreases the active VSG RNA level, and derepresses silent VSGs. The competition between TbRAP1's RNA and dsDNA binding activities suggests a VSG monoallelic expression mechanism in which the active VSG's abundant RNA antagonizes TbRAP1's silencing effect, thereby sustaining its full-level expression.


Assuntos
Trypanosoma brucei brucei , Tripanossomíase Africana , Animais , Humanos , Glicoproteínas Variantes de Superfície de Trypanosoma/genética , Motivo de Reconhecimento de RNA , Trypanosoma brucei brucei/metabolismo , RNA/genética , RNA/metabolismo
2.
ACS Infect Dis ; 8(8): 1711-1726, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35894227

RESUMO

Human African trypanosomiasis (HAT) remains a health threat to sub-Saharan Africa. The current treatments suffer from drug resistance and life-threatening side effects, making drug discovery for HAT still important. A high-throughput screening of the library of pharmaceutically active compounds identified prazosin, an α-adrenoceptor antagonist, that showed selective activity toward Trypanosoma brucei brucei. Furthermore, a series of prazosin analogues were examined, and overall, the new analogues had improved activity and selectivity. To elucidate the binding partner, a biotin-conjugated probe was synthesized, and a protein pulldown assay combined with a proteomic analysis identified the flagellum attachment zone 1 (FAZ1) filament as an interacting partner. Additionally, prazosin treatment resulted in dysfunction of the flagellum of trypanosome cells, which is indicative of a FAZ1 irregularity. We also examined the drug distribution by utilizing immunofluorescence with a designed fluorescent analogue that showed partial colocalization with FAZ1. With the activity of the prazosin analogues, a structure-activity relationship (SAR) was summarized for future lead optimization. Our findings provide a new group of FAZ1 inhibitors as novel antitrypanosomal agents.


Assuntos
Tripanossomicidas , Tripanossomíase Africana , Animais , Flagelos , Humanos , Prazosina/uso terapêutico , Proteômica , Tripanossomicidas/farmacologia , Tripanossomíase Africana/tratamento farmacológico
3.
Bioorg Med Chem ; 61: 116740, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35396128

RESUMO

Human African trypanosomiasis is caused by a protozoan parasite Trypanosoma brucei majorly infecting people living in sub-Saharan Africa. Current limited available treatments suffer from drug resistance, severe adverse effects, low efficacy, and costly administrative procedures in African countries with limited medical resources. Therefore, there is always a perpetual demand for advanced drug development and invention of new strategies to combat the disease. Previous work in our lab generated a library of sulfonamide analogs as selective tubulin inhibitors, based on the structural difference between mammalian and trypanosome tubulin proteins. Further lead derivatization was performed in the current study and generated 25 potential drug candidates to improve the drug efficacy and uptake by selectively targeting the parasite's P2 membrane transporter protein with imidamide moiety. One of the newly synthesized analogs, compound 25 with a di-imidamide moiety, has shown greater potency with an IC50 of 1 nM to selectively inhibit the growth of trypanosome cells without affecting the viability of mammalian cells. Western blot analyses reveal that the compound suppressed tubulin polymerization in T. brucei cells. A detailed structure-activity relationship (SAR) was summarized that will be used to guide future lead optimization.


Assuntos
Tripanossomicidas , Trypanosoma brucei brucei , Tripanossomíase Africana , Animais , Humanos , Mamíferos/metabolismo , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/parasitologia , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacologia
4.
Nucleic Acids Res ; 50(4): 2036-2050, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35061898

RESUMO

Trypanosoma brucei causes human African trypanosomiasis and sequentially expresses distinct VSGs, its major surface antigen, to achieve host immune evasion. VSGs are monoallelically expressed from subtelomeric loci, and telomere proteins regulate VSG monoallelic expression and VSG switching. T. brucei telomerase is essential for telomere maintenance, but no regulators of telomerase have been identified. T. brucei appears to lack OB fold-containing telomere-specific ssDNA binding factors that are critical for coordinating telomere G- and C-strand syntheses in higher eukaryotes. We identify POLIE as a telomere protein essential for telomere integrity. POLIE-depleted cells have more frequent VSG gene conversion-mediated VSG switching and an increased amount of telomeric circles (T-circles), indicating that POLIE suppresses DNA recombination at the telomere/subtelomere. POLIE-depletion elongates telomere 3' overhangs dramatically, indicating that POLIE is essential for coordinating DNA syntheses of the two telomere strands. POLIE depletion increases the level of telomerase-dependent telomere G-strand extension, identifying POLIE as the first T. brucei telomere protein that suppresses telomerase. Furthermore, depletion of POLIE results in an elevated telomeric C-circle level, suggesting that the telomere C-strand experiences replication stress and that POLIE may promote telomere C-strand synthesis. Therefore, T. brucei uses a novel mechanism to coordinate the telomere G- and C-strand DNA syntheses.


Assuntos
Telomerase , Telômero , Trypanosoma/metabolismo , DNA/metabolismo , Humanos , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo , Trypanosoma/genética , Glicoproteínas Variantes de Superfície de Trypanosoma/genética
5.
Nucleic Acids Res ; 49(10): 5637-5653, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34048580

RESUMO

Telomere repeat-containing RNA (TERRA) has been identified in multiple organisms including Trypanosoma brucei, a protozoan parasite that causes human African trypanosomiasis. T. brucei regularly switches its major surface antigen, VSG, to evade the host immune response. VSG is expressed exclusively from subtelomeric expression sites, and we have shown that telomere proteins play important roles in the regulation of VSG silencing and switching. In this study, we identify several unique features of TERRA and telomere biology in T. brucei. First, the number of TERRA foci is cell cycle-regulated and influenced by TbTRF, the duplex telomere DNA binding factor in T. brucei. Second, TERRA is transcribed by RNA polymerase I mainly from a single telomere downstream of the active VSG. Third, TbTRF binds TERRA through its C-terminal Myb domain, which also has the duplex DNA binding activity, in a sequence-specific manner and suppresses the TERRA level without affecting its half-life. Finally, levels of the telomeric R-loop and telomere DNA damage were increased upon TbTRF depletion. Overexpression of an ectopic allele of RNase H1 that resolves the R-loop structure in TbTRF RNAi cells can partially suppress these phenotypes, revealing an underlying mechanism of how TbTRF helps maintain telomere integrity.


Assuntos
RNA Longo não Codificante/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Trypanosoma brucei brucei/genética , Tripanossomíase Africana/parasitologia , Glicoproteínas Variantes de Superfície de Trypanosoma/metabolismo
6.
Sci Adv ; 6(38)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32948591

RESUMO

Localization of Repressor Activator Protein 1 (RAP1) to the telomere is essential for its telomeric functions. RAP1 homologs either directly bind the duplex telomere DNA or interact with telomere-binding proteins. We find that Trypanosoma brucei RAP1 relies on a unique double-stranded DNA (dsDNA) binding activity to achieve this goal. T. brucei causes human sleeping sickness and regularly switches its major surface antigen, variant surface glycoprotein (VSG), to evade the host immune response. VSGs are monoallelically expressed from subtelomeres, and TbRAP1 is essential for VSG regulation. We identify dsDNA and single-stranded DNA binding activities in TbRAP1, which require positively charged 737RKRRR741 residues that overlap with TbRAP1's nuclear localization signal in the MybLike domain. Both DNA binding activities are electrostatics-based and sequence nonspecific. The dsDNA binding activity can be substantially diminished by phosphorylation of two 737RKRRR741-adjacent S residues and is essential for TbRAP1's telomere localization, VSG silencing, telomere integrity, and cell proliferation.


Assuntos
Glicoproteínas de Membrana , Glicoproteínas Variantes de Superfície de Trypanosoma , DNA/genética , Humanos , Glicoproteínas de Membrana/genética , Proteínas de Protozoários/química , Telômero/genética , Telômero/metabolismo , Glicoproteínas Variantes de Superfície de Trypanosoma/genética , Glicoproteínas Variantes de Superfície de Trypanosoma/metabolismo
7.
mSphere ; 5(1)2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32102938

RESUMO

RAP1 is a telomere protein that is well conserved from protozoa to mammals. It plays important roles in chromosome end protection, telomere length control, and gene expression/silencing at both telomeric and nontelomeric loci. Interaction with different partners is an important mechanism by which RAP1 executes its different functions in yeast. The RAP1 ortholog in Trypanosoma brucei is essential for variant surface glycoprotein (VSG) monoallelic expression, an important aspect of antigenic variation, where T. brucei regularly switches its major surface antigen, VSG, to evade the host immune response. Like other RAP1 orthologs, T. brucei RAP1 (TbRAP1) has conserved functional domains, including BRCA1 C terminus (BRCT), Myb, MybLike, and RAP1 C terminus (RCT). To study functions of various TbRAP1 domains, we established a strain in which one endogenous allele of TbRAP1 is flanked by loxP repeats, enabling its conditional deletion by Cre-mediated recombination. We replaced the other TbRAP1 allele with various mutant alleles lacking individual functional domains and examined their nuclear localization and protein interaction abilities. The N terminus, BRCT, and RCT of TbRAP1 are required for normal protein levels, while the Myb and MybLike domains are essential for normal cell growth. Additionally, the Myb domain of TbRAP1 is required for its interaction with T. brucei TTAGGG repeat-binding factor (TbTRF), while the BRCT domain is required for its self-interaction. Furthermore, the TbRAP1 MybLike domain contains a bipartite nuclear localization signal that is required for its interaction with importin α and its nuclear localization. Interestingly, RAP1's self-interaction and the interaction between RAP1 and TRF are conserved from kinetoplastids to mammals. However, details of the interaction interfaces have changed throughout evolution.IMPORTANCETrypanosoma brucei causes human African trypanosomiasis and regularly switches its major surface antigen, VSG, to evade the host immune response. VSGs are expressed from subtelomeres in a monoallelic fashion. TbRAP1, a telomere protein, is essential for cell viability and VSG monoallelic expression and suppresses VSG switching. Although TbRAP1 has conserved functional domains in common with its orthologs from yeasts to mammals, the domain functions are unknown. RAP1 orthologs have pleiotropic functions, and interaction with different partners is an important means by which RAP1 executes its different roles. We have established a Cre-loxP-mediated conditional knockout system for TbRAP1 and examined the roles of various functional domains in protein expression, nuclear localization, and protein-protein interactions. This system enables further studies of TbRAP1 point mutation phenotypes. We have also determined functional domains of TbRAP1 that are required for several different protein interactions, shedding light on the underlying mechanisms of TbRAP1-mediated VSG silencing.


Assuntos
Variação Antigênica , Inativação Gênica , Domínios e Motivos de Interação entre Proteínas , Proteínas de Protozoários/genética , Proteínas de Ligação a Telômeros/genética , Trypanosoma brucei brucei/genética , Alelos , Glicoproteínas de Membrana/genética , Mutação Puntual , Telômero/genética , Proteínas de Ligação a Telômeros/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...