Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 6(31): 20611-20618, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34396006

RESUMO

Membrane proteins are vital for biological function and are complex to study. Even in model peptide-lipid systems, the combined influence or interaction of pairs of chemical groups still is not well understood. Disordered proteins, whether in solution or near lipid membranes, are an emerging paradigm for the initiation and control of biological function. The disorder can involve molecular orientation as well as molecular folding. This paper reports an astonishing induction of disorder when one Glu residue is introduced into a highly stable 23-residue transmembrane helix. The parent helix is anchored by a single Arg residue, tilted at a well-defined angle with respect to the DOPC bilayer normal and undergoes rapid cone precession. When Glu is introduced two residues away from Arg, with 200° (or 160°) radial separation, the helix properties change radically to exhibit a multiplicity of three or more disordered states. The helix characteristics have been monitored by deuterium (2H) NMR spectroscopy as functions of the pH and lipid bilayer composition. The disordered multistate behavior of the (Glu, Arg)-containing helix varies with the lipid bilayer thickness and pH. The results highlight a fundamental induction of protein multistate properties by a single Glu residue in a lipid membrane environment.

2.
Biochim Biophys Acta Biomembr ; 1863(1): 183501, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33130099

RESUMO

We have employed the peptide framework of GWALP23 (acetyl-GGALWLALALALALALALWLAGA-amide) to examine the orientation, dynamics and pH dependence of peptides having buried single or pairs of histidine residues. When residue L8 is substituted to yield GWALP23-H8, acetyl-GGALWLAH8ALALALALALWLAGA-amide, the deuterium NMR spectra of 2H-labeled core alanine residues reveal a helix that occupies a single transmembrane orientation in DLPC, or in DMPC at low pH, yet shows multiple states at higher pH or in bilayers of DOPC. Moreover, a single histidine at position 8 or 16 in the GWALP23 framework is sensitive to pH. Titration points are observed near pH 3.5 for the deprotonation of H8 in lipid bilayers of DLPC or DMPC, and for H16 in DOPC. When residues L8 and L16 both are substituted to yield GWALP23-H8,16, the 2H NMR spectra show, interestingly, no titration dependence from pH 2-8, yet bilayer thickness-dependent orientation differences. The helix with H8 and H16 is found to adopt a transmembrane orientation in thin bilayers of DLPC, a combination of transmembrane and surface orientations in DMPC, and then a complete transition to a surface bound orientation in the thicker DPoPC and DOPC lipid bilayers. In the surface orientations, alanine A7 no longer fits within the core helix. These results along with previous studies with different locations of histidine residues suggest that lipid hydrophobic thickness is a first determinant and pH a second determinant for the helical orientation, along with possible side-chain snorkeling, when the His residues are incorporated into the hydrophobic region of a lipid membrane-associated helix.


Assuntos
Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Peptídeos/química , Histidina/química , Conformação Proteica em alfa-Hélice
3.
Biomolecules ; 10(2)2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32053887

RESUMO

Charged and aromatic amino acid residues, being enriched toward the terminals of membrane-spanning helices in membrane proteins, help to stabilize particular transmembrane orientations. Among them, histidine is aromatic and can be positively charged at low pH. To enable investigations of the underlying protein-lipid interactions, we have examined the effects of single or pairs of interfacial histidine residues using the constructive low-dynamic GWALP23 (acetyl-GG2ALW5LALALALALALALW19LAG22A-amide) peptide framework by incorporating individual or paired histidines at locations 2, 5, 19, or 22. Analysis of helix orientation by means of solid-state 2H NMR spectra of labeled alanine residues reveals marked differences with H2,22 compared to W2,22. Nevertheless, the properties of membrane-spanning H2,22WALP23 helices show little pH dependence and are similar to those having Gly, Arg, or Lys at positions 2 and 22. The presence of H5 or H19 influences the helix rotational preference but not the tilt magnitude. H5 affects the helical integrity, as residue 7 unwinds from the core helix; yet, once again, the helix orientation and dynamic properties show little sensitivity to pH. The overall results reveal that the detailed properties of transmembrane helices depend upon the precise locations of interfacial histidine residues.


Assuntos
Histidina/química , Proteínas de Membrana/química , Triptofano/química , Substituição de Aminoácidos , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Bicamadas Lipídicas/química , Espectroscopia de Ressonância Magnética , Peptídeos/síntese química , Peptídeos/química , Estrutura Secundária de Proteína
4.
Biochim Biophys Acta Biomembr ; 1862(2): 183134, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31738898

RESUMO

The transmembrane helices of membrane proteins often are flanked by interfacial charged or aromatic residues that potentially help to anchor the membrane-spanning protein. For isolated single-span helices, the interfacial residues may be especially important for stabilizing particular tilted transmembrane orientations. The peptide RWALP23 (acetyl-GR2ALW(LA)6LWLAR22A-amide) has been employed to investigate the interplay between interfacial arginines and tryptophans. Here we replace the tryptophans of RWALP23 with A5 and A19, to investigate arginines alone with respect to helix fraying and orientation in varying lipid bilayers. Deuterated alanines incorporated into the central sequence allow the orientation and stability of the core helix to be assessed by means of solid -state 2H NMR in bilayers of DOPC, DMPC and DLPC. The helix tilt from the bilayer normal is found to increase slightly when R2 and R22 are present, and increases still further when the tryptophans W5 and W19 are replaced by alanines. The extent of helix dynamic averaging remains low in all cases. The preferred helix azimuthal rotation is essentially constant for all of the helices in each of the lipid membranes considered here. The alanines located outside of the core region of the peptide are sensitive to helical integrity. The new alanines, A5 and A19, therefore, provide new information about the length of the core helix and the onset of unraveling of the terminals. Residue A19 remains essentially on the central helix in each lipid membrane, while residues A3, A5 and A21 deviate from the core helix to an extent that depends on the membrane thickness. Differential unraveling of the two ends to expose peptide backbone groups for hydrogen bonding therefore acts together with specific interfacial side chains to stabilize a transmembrane helix.


Assuntos
Arginina/química , Proteínas de Membrana/química , Triptofano/química , Motivos de Aminoácidos , Membrana Celular/química , Simulação de Dinâmica Molecular , Conformação Proteica em alfa-Hélice , Estabilidade Proteica
5.
Chembiochem ; 20(21): 2784-2792, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31150136

RESUMO

Membrane proteins are essential for many cell processes yet are more difficult to investigate than soluble proteins. Charged residues often contribute significantly to membrane protein function. Model peptides such as GWALP23 (acetyl-GGALW5 LAL8 LALALAL16 ALW19 LAGA-amide) can be used to characterize the influence of specific residues on transmembrane protein domains. We have substituted R8 and R16 in GWALP23 in place of L8 and L16, equidistant from the peptide center, and incorporated specific 2 H-labeled alanine residues within the central sequence for detection by solid-state 2 H NMR spectroscopy. The resulting pattern of [2 H]Ala quadrupolar splitting (Δνq ) magnitudes indicates the core helix for R8,16 GWALP23 is significantly tilted to give a similar transmembrane orientation in thinner bilayers with either saturated C12:0 or C14:0 acyl chains (1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) or 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)) or unsaturated C16:1 Δ9 cis acyl chains. In bilayers of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC; C18:1 Δ9 cis) multiple orientations are indicated, whereas in longer, unsaturated 1,2-dieicosenoyl-sn-glycero-3-phosphocholine (DEiPC; C20:1 Δ11 cis) bilayers, the R8,16 GWALP23 helix adopts primarily a surface orientation. The inclusion of 10-20 mol % cholesterol in DOPC bilayers drives more of the R8,16 GWALP23 helix population to the membrane surface, thereby allowing both charged arginines access to the interfacial lipid head groups. The results suggest that hydrophobic thickness and cholesterol content are more important than lipid saturation for the arginine peptide dynamics and helix orientation in lipid membranes.


Assuntos
Arginina/química , Colesterol/química , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Proteínas de Membrana/química , Peptídeos/química , Sequência de Aminoácidos , Dicroísmo Circular/métodos , Dimiristoilfosfatidilcolina/química , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética/métodos , Fosfatidilcolinas/química , Estrutura Secundária de Proteína , Espectrometria de Fluorescência/métodos
6.
Biochemistry ; 58(6): 633-645, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30565458

RESUMO

Transmembrane helices dominate the landscape for many membrane proteins. Often flanked by interfacial aromatic residues, these transmembrane helices also contain loops and interhelix segments, which could help in stabilizing a transmembrane orientation. Using 2H nuclear magnetic resonance spectroscopy to monitor bilayer-incorporated model GWALP23 family peptides, we address systematically the issue of helix fraying in relation to the dynamics and orientation of highly similar individual transmembrane helices. We inserted aromatic (Phe, Trp, Tyr, and His) or non-aromatic residues (Ala and Gly) into positions 4 and 5 adjacent to a core transmembrane helix to examine the side-chain dependency of the transmembrane orientation, dynamics, and helix integrity (extent and location of unraveling). Incorporation of [2H]alanine labels enables one to assess the helicity of the core sequence and the peptide termini. For most of the helices, we observed substantial unwinding involving at least three residues at both ends. For the unique case of histidine at positions 4 and 5, an extended N-terminal unwinding was observed up to residue 7. For further investigation of the onset of fraying, we employed A4,5GWALP23 with 2H labels at residues 4 and 5 and found that the number of terminal residues involved in the unwinding depends on bilayer thicknesses and helps to govern the helix dynamics. The combined results enable us to compare and contrast the extent of fraying for each related helix, as reflected by the deviation of experimental 2H quadrupolar splitting magnitudes of juxta-terminal alanines A3 and A21 from those represented by an ideal helix geometry.


Assuntos
Bicamadas Lipídicas/química , Proteínas de Membrana/química , Peptídeos/química , Água/química , Alanina/química , Sequência de Aminoácidos , Dimiristoilfosfatidilcolina/química , Glicina/química , Ligação de Hidrogênio , Proteínas de Membrana/síntese química , Peptídeos/síntese química , Fosfatidilcolinas/química , Conformação Proteica em alfa-Hélice , Desdobramento de Proteína
7.
Biochim Biophys Acta Biomembr ; 1860(10): 2108-2117, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29447916

RESUMO

In this article we review current understanding of basic principles for the folding of membrane proteins, focusing on the more abundant alpha-helical class. Membrane proteins, vital to many biological functions and implicated in numerous diseases, fold into their active conformations in the complex environment of the cell bilayer membrane. While many membrane proteins rely on the translocon and chaperone proteins to fold correctly, others can achieve their functional form in the absence of any translation apparatus or other aides. Nevertheless, the spontaneous folding process is not well understood at the molecular level. Recent findings suggest that helix fraying and loop formation may be important for overall structure, dynamics and regulation of function. Several types of membrane helices with ionizable amino acids change their topology with pH. Additionally we note that some peptides, including many that are rich in arginine, and a particular analogue of gramicidin, are able passively to translocate across cell membranes. The findings indicate that a final protein structure in a lipid-bilayer membrane is sequence-based, with lipids contributing to stability and regulation. While much progress has been made toward understanding the folding process for alpha-helical membrane proteins, it remains a work in progress. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo.


Assuntos
Membrana Celular/química , Membrana Celular/fisiologia , Proteínas de Membrana/química , Sequência de Aminoácidos , Aminoácidos/metabolismo , Concentração de Íons de Hidrogênio , Bicamadas Lipídicas/química , Membranas/metabolismo , Modelos Moleculares , Peptídeos/química , Conformação Proteica , Conformação Proteica em alfa-Hélice , Dobramento de Proteína , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...