Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 13(5)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37233520

RESUMO

Thermally localized solar-driven water evaporation (SWE) in recent years has increasingly been developed due to the potential of cost-efficient freshwater production from small-scale portable devices. In particular, the multistage SWE has attracted much attention as the systems possess mostly a simple foundational structure and high solar-to-thermal conversion output rates, enough to produce freshwater from 1.5 L m-2h-1 (LMH) to 6 LMH. In this study, the currently designed multistage SWE devices were reviewed and examined based on their unique characteristics as well as their performances in freshwater production. The main distinguishing factors in these systems were the condenser staging design and the spectrally selective absorbers either in a form of high solar absorbing material, photovoltaic (PV) cells for water and electricity co-production, and coupling of absorber and solar concentrator. Other elements of the devices involved differences such as the direction of water flow, the number of layers constructed, and the materials used for each layer of the system. The key factors to consider for these systems include the heat and mass transport in the device, solar-to-vapor conversion efficiency, gain output ratio (representing how many times the latent heat has been reused), water production rate/number of stages, and kWh/number of stages. It was evident that most of the studied devices involved slightly different mechanisms and material compositions to draw out higher efficiency rates from the current limitations. The reviewed designs showed the ability to be adopted into small-scale solar desalination allowing for accessibility of sufficient freshwater in needing regions.

2.
Membranes (Basel) ; 13(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36837695

RESUMO

In this work, inkjet printing technology was used to print a thin layer of a hydrophilic solution containing polydopamine as a binder and polyethyleneimine as a strong hydrophilic agent on a commercial hydrophobic membrane to produce a Janus membrane for membrane distillation. The pristine and modified membranes were tested in a direct-contact membrane distillation system with mineral oil-containing feedwater. The results revealed that an integrated and homogenous hydrophilic layer was printed on the membrane with small intrusions in the pores. The membrane, which contained three layers of inkjet-printed hydrophilic layers, showed a high underwater oil contact angle and a low in-air water contact angle. One-layer inkjet printing was not robust enough, but the triple-layer coated modified membrane maintained its anti-oil fouling performance even for a feed solution containing 70 g/L NaCl and 0.01 v/v% mineral oil concentration with a flux of around 20 L/m2h. This study implies the high potential of the inkjet printing technique as a facile surface modification strategy to improve membrane performance.

3.
Chemosphere ; 318: 137902, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36669538

RESUMO

In this study, a composite electrospun nanofiber membrane was fabricated and used to treat a geothermal brine source with lithium enrichment. An in-situ growth technique was applied to incorporate silica nanoparticles on the surface of nanofibers with (3-Aminopropyl) triethoxysilane as the nucleation site. The fabricated composite nanofiber membrane was heat pressed to enhance the integration of the membrane and its mechanical stability. The fabricated membranes were tested to evaluate their performance in feedwater containing different concentrations of NaCl in the range of 0-100 g/L, and the wetting resistivity of the membranes was examined. Finally, the optimal membrane was applied to treat the simulated geothermal brine. The experimental results revealed that the in-situ growth of nanoparticles and coating of flourosilane agent dramatically improved the separation performance of the membrane with high salt rejection, and adequate flux was achieved. The heat-pressed membrane obtained >99% salt rejection and flux of 14-19 L/m2h at varying feedwater salinity (0-100 g/L), and the concentration of the Li during the 24 h test reached >1100 ppm from the initial 360 ppm. Evaluation of the energy efficiency of the membranes showed that the heat-pressed membrane obtained the optimum energy efficiency in the high concentration of salts. Additionally, the economic analysis indicated that MD could achieve a levelized cost of 2.9 USD/m3 of lithium brine concentration as the heat source is within the feed. Overall, this technology would represent a viable alternative to the solar pond to concentrate Li brine, enabling a compact, efficient, and continuous operating system.


Assuntos
Nanofibras , Purificação da Água , Sais , Lítio , Destilação , Membranas Artificiais , Purificação da Água/métodos , Cloreto de Sódio , Íons
4.
Chemosphere ; 305: 135294, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35697112

RESUMO

In this study, a comprehensive model was developed using Computational Fluid Dynamics (CFD), and the behaviour of a direct contact membrane distillation (DCMD) system was investigated at hypersaline feedwater conditions. The effects of various operating parameters including feed and permeate velocities, temperatures and salinities, as well as different membrane characteristics like thickness, porosity, and thermal conductivity were studied. The developed simulation model was also validated using experimental data. The results showed that the membrane conductivity and thickness had a significant impact on the DCMD performance, and the optimum operational condition was necessary to be determined. The results showed that increasing the feedwater salinity from 50 to 200 g/l decreased the membrane flux by up to 33%, while a four times decrease in thermal conductivity of the membrane could lead to an increase in the membrane flux from 11.2 to 32.4 l/m2·h (LMH). In addition, the optimal membrane thickness was found to increase with salinity, reaching >120 µm for treatment of 22 wt% NaCl feedwater solution. However, the flux declined from >32 LMH to <13 LMH upon the increase in feedwater salinity (up to 22 wt% NaCl solution). It is also shown that a thinner membrane performed better for desalination of low salinity feedwater, while the thicker one produces higher separation performance and thermal efficiency for hypersaline brine desalination.


Assuntos
Destilação , Purificação da Água , Destilação/métodos , Hidrodinâmica , Membranas Artificiais , Cloreto de Sódio , Água , Purificação da Água/métodos
5.
Adv Colloid Interface Sci ; 289: 102362, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33607551

RESUMO

Membrane distillation (MD) is a promising hybrid thermal-membrane separation technology that can efficiently produce freshwater from seawater or contaminated wastewater. However, the relatively low flux and the presence of fouling or wetting agents in feed solution negate the applicability of MD for long term operation. In recent years, 'two-faced' membranes or Janus membranes have shown promising potential to decrease wetting and fouling problem of common MD system as well as enhance the flux performance. In this review, a comprehensive study was performed to investigate the various fabrication, modification, and novel design processes to prepare Janus membranes and discuss their performance in desalination and wastewater treatment utilizing MD. The promising potential, challenges and future prospects relating to the design and use of Janus membranes for MD are also tackled in this review.

6.
Membranes (Basel) ; 10(9)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872232

RESUMO

Nanofibers are one of the most attractive materials in various applications due to their unique properties and promising characteristics for the next generation of materials in the fields of energy, environment, and health. Among the many fabrication methods, electrospinning is one of the most efficient technologies which has brought about remarkable progress in the fabrication of nanofibers with high surface area, high aspect ratio, and porosity features. However, neat nanofibers generally have low mechanical strength, thermal instability, and limited functionalities. Therefore, composite and modified structures of electrospun nanofibers have been developed to improve the advantages of nanofibers and overcome their drawbacks. The combination of electrospinning technology and high-quality nanomaterials via materials science advances as well as new modification techniques have led to the fabrication of composite and modified nanofibers with desired properties for different applications. In this review, we present the recent progress on the fabrication and applications of electrospun nanofiber composites to sketch a progress line for advancements in various categories. Firstly, the different methods for fabrication of composite and modified nanofibers have been investigated. Then, the current innovations of composite nanofibers in environmental, healthcare, and energy fields have been described, and the improvements in each field are explained in detail. The continued growth of composite and modified nanofiber technology reveals its versatile properties that offer alternatives for many of current industrial and domestic issues and applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...