Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Small ; : e2406113, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39279593

RESUMO

Fabrication of cost-effective and robust metal-based electrocatalysts for hydrogen evolution reactions (HER) across the entire pH range has garnered significant attention in harvesting renewable energy. Herein, the fabrication of 3D high-surface Ni Foam-Graphene-Carbon Nanotubes (NGC) decorated with phosphorous-inserted tin selenide (SnSe-P) showcases unprecedented HER activity with minimal overpotentials across all pH ranges (52 mV in acidic, 93 mV in basic, and 198 mV in neutral conditions@10 mA cm-2) and stability at 1 A cm-2 for 72 h. The as-designed catalyst shows a low overpotential of 122 mV@10 mA cm-2 in alkaline seawater, achieved through controlled electronic distribution on Sn site after incorporation of P in NGC-SnSe-P. A stable cell voltage of 1.56 V@10 mA cm⁻2 is achieved for prolonged time in 1 m KOH toward overall water electrolysis. Experimental and theoretical investigation reveals that the insertion of P in layered SnSe enables s orbitals of H* and p orbitals of Sn to interact, favoring the adsorption of the H* intermediate. A renewable approach is adopted by using silicon solar cells (η = 10.66%) to power up the electrolyzer, yielding a solar-to-hydrogen (STH) conversion efficiency of 7.70% in 1 m KOH and 5.65% in alkaline seawater, aiming toward green hydrogen production.

2.
ACS Appl Mater Interfaces ; 16(20): 26899-26914, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38741334

RESUMO

The extreme sensitivity of 2D-layered materials to environmental adsorbates, which is typically seen as a challenge, is harnessed in this study to fine-tune the material properties. This work investigates the impact of environmental adsorbates on electrical properties by studying metal-semiconductor-metal (MSM) devices fabricated on CVD-synthesized SnSe flakes. The freshly prepared devices exhibit positive photoconductivity (PPC), whereas they gradually develop negative photoconductivity (NPC) after being exposed to an ambient environment for ∼1 day. While the photodetectors based on positive photoconductivity exhibit a responsivity and detectivity of 6.1 A/W and 5.06 × 108 Jones, the same for the negative photoconductivity-based photodetector reaches up to 36.3 A/W and 1.49 × 109 Jones, respectively. In addition, the noise-equivalent power of the NPC photodetector decreases by 300 times as compared to the PPC device, which implies a prominent detection capability of the NPC device against weak photo signals. To substantiate the hypothesis that negative photoconductivity stems from the photodesorption of water and oxygen molecules on the dangling bonds of SnSe flakes, the flakes are etched along the most active planes (010) with a focused laser beam in an inert environment, which enhances responsivity by 43%, supporting negative photoconductivity linked to photodesorption. Furthermore, the humidity-dependent dark current variation of the NPC photodetectors is used to design a humidity sensor for human respiration monitoring with faster response and recovery times of 0.72 and 0.68 s, respectively. These findings open up the possibility of tuning the photoelectrical response of layered materials in a facile manner to develop future sensors and optoelectronic multifunctional devices.

3.
Small ; 20(14): e2306756, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38126960

RESUMO

For an uninterrupted self-powered network, the requirement of miniaturized energy storage device is of utmost importance. This study explores the potential utilization of phosphorus-doped nickel oxide (P-NiO) to design highly efficient durable micro-supercapacitors. The introduction of P as a dopant serves to enhance the electrical conductivity of bare NiO, leading to 11-fold augmentation in volumetric capacitance to 841.92 Fcm-3 followed by significant enhancement of energy and power density from 6.71 to 42.096 mWhcm-3 and 0.47 to 1.046 Wcm-3, respectively. Theoretical calculations used to determine the adsorption energy of OH- ions, revealing higher in case of bare NiO (1.52 eV) as compared to phosphorus-doped NiO (0.64 eV) leading to high electrochemical energy storage performance. The as-designed micro-supercapacitor (MSC) device demonstrates a facile integration with the photovoltaic system for renewable energy storage and smooth transfer to external loads for enlightening the blue LED for ≈1 min. The choice of P-NiO/Ni not only contributes to cost reduction but also ensures minimal lattice mismatch at the interface facilitating high durability up to 15 K cycles along with capacitive retention of ≈100% and coulombic efficiency of 93%. Thus, the heterostructure unveils the possibilities of exploring miniaturized energy storage devices for portable electronics.

4.
Small ; 19(50): e2304399, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37626463

RESUMO

Water splitting via an uninterrupted electrochemical process through hybrid energy storage devices generating continuous hydrogen is cost-effective and green approach to address the looming energy and environmental crisis toward constant supply of hydrogen fuel in fuel cell driven automobile sector. The high surface area metal-organic framework (MOF) driven bimetallic phosphides (ZnP2 @CoP) on top of CNT-carbon cloth matrix is utilized as positive and negative electrodes in energy storage devices and overall water splitting. The as-prepared positive electrode exhibits excellent specific capacitances/capacity of 1600 F g-1 /800 C g-1 @ 1A g-1 and the corresponding hybrid device reveals an energy density of 83.03 Wh kg-1 at power density of 749.9 W kg-1 . Simultaneously, the electrocatalytic performance of heterostructure shows overpotentials of 90 mV@HER and 204 mV@OER at current density of 10 and 20 mA cm-2 , respectively in alkaline electrocatalyzer. Undoubtedly, it shows overall water splitting with low cell voltage of 1.53 V@10 mA cm-2 having faradic and solar-to-hydrogen conversion efficiency of 98.81% and 9.94%, respectively. In addition, the real phase demonstration of the overall water-splitting is performed where the electrocatalyzer is connected with a series of hybrid supercapacitor devices powered up by the 6 V standard silicon solar panel to produce uninterrupted green H2 .

5.
ACS Nano ; 16(3): 4861-4875, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35188366

RESUMO

Water splitting using renewable energy resources is an economic and green approach that is immensely enviable for the production of high-purity hydrogen fuel to resolve the currently alarming energy and environmental crisis. One of the effective routes to produce green fuel with the help of an integrated solar system is to develop a cost-effective, robust, and bifunctional electrocatalyst by complete water splitting. Herein, we report a superhydrophilic layered leaflike Sn4P3 on a graphene-carbon nanotube matrix which shows outstanding electrochemical performance in terms of low overpotential (hydrogen evolution reaction (HER), 62 mV@10 mA/cm2, and oxygen evolution reaction (OER), 169 mV@20 mA/cm2). The outstanding stability of HER at least for 15 days at a high applied current density of 400 mA/cm2 with a minimum loss of potential (1%) in acid medium infers its potential compatibility toward the industrial sector. Theoretical calculations indicate that the decoration of Sn4P3 on carbon nanotubes modulates the electronic structure by creating a higher density of state near Fermi energy. The catalyst also reveals an admirable overall water splitting performance by generating a low cell voltage of 1.482 V@10 mA/cm2 with a stability of at least 65 h without obvious degradation of potential in 1 M KOH. It exhibited unassisted solar energy-driven water splitting when coupled with a silicon solar cell by extracting a high stable photocurrent density of 8.89 mA/cm2 at least for 90 h with 100% retention that demonstrates a high solar-to-hydrogen conversion efficiency of ∼10.82%. The catalyst unveils a footprint for pure renewable fuel production toward carbon-free future green energy innovation.

6.
J Phys Chem Lett ; 12(28): 6574-6581, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34242023

RESUMO

In energy storage-device it is highly crucial to develop durable electrode materials having high specific capacitance and superior energy density without disturbing its inherent flexibility. Herein, we demonstrate three-dimensional graphene oxide decorated monodispersed hollow urchin γ-MnS (γ-MnS@3DG) via proficient one-step solvothermal method. The designed material delivers a remarkable capacitance of 858 F g-1 at 1 A g-1. A flexible solid state asymmetric supercapacitor (ASCs) device assembled using surface activated carbon cloth (CC) decorated with γ-MnS@3DG as positive and three-dimension graphene on carbon cloth (3DG@CC) as negative electrode, (γ-MnS@3DG//3DG). The device delivers 26 Wh kg-1 energy density at power density 500 W kg-1 @ 1A g-1 and retains favorable energy density 17.8 Wh kg-1 at an ultrahigh power density of 1500 W kg-1@3 A g-1. This carbon embedded transition-metal sulfide (TMS) based ASC demonstrates eminent mechanical flexibility under rigorous bending states maintaining invariant performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA