Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(20): 14456-14464, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38699689

RESUMO

Proton exchange membranes (PEMs) have emerged as very promising membranes for automotive applications because of their notable proton conductivity at low temperatures. These membranes find extensive utilization in fuel cells. Several polymeric materials have been used, but their application is constrained by their expense and intricate synthetic processes. Affordable and efficient synthetic methods for polymeric materials are necessary for the widespread commercial use of PEM technology. The polymeric combination of hexachlorocyclotriphosphazene (HCCP) and 4,4-diamino-2,2-biphenyldisulfonic acid facilitated the synthesis of PP-(PhSO3H)2, a polyphosphazene with built-in -SO3H moieties. Characterization revealed that it was a porous organic polymer with high stability. PP-(PhSO3H)2 exhibited a proton conductivity of up to 8.24 × 10-2 S cm-1 (SD = ±0.031) at 353 K under 98% relative humidity (RH), which was more than two orders of magnitude higher than that of its -SO3H-free analogue, PP-(Ph)2 (2.32 × 10-4 S cm-1) (SD = ±0.019) under identical conditions. Therefore, for application in a PEM fuel cell, PP-(PhSO3H)2-based matrix-mixed membranes (PP-(PhSO3H)2-MMMs) were fabricated by mixing them with polyacrylonitrile (PAN) in various ratios. The proton conductivity could reach up to 6.11 × 10-2 S cm-1 (SD = ±0.0048) at 353 K and 98%RH, when the weight ratio of PP-(PhSO3H)2 : PAN was 3 : 1, the value of which was comparable with those of commercially available electrolytes used in PEM fuel cells. PP-(PhSO3H)2-MMM (3 : 1) had an extended lifetime of reusability. Using phosphazene and bisulfonated multiple-amine modules as precursors, we demonstrated that a porous organic polymer with a highly effective proton-conductive matrix-mixed membrane for PEM fuel cells could be produced readily by an intuitive polymeric reaction.

2.
Langmuir ; 38(34): 10503-10511, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35976224

RESUMO

A polyphosphazene with in-built -SO3H moieties (PP-PhSO3H) was facilely synthesized by the polymeric combination of hexachlorocyclotriphosphazene (HCCP) and sulfonate p-phenylenediamine. Characterization reveals that it is a highly stable amorphous polymer. Proton conductivity investigations showed that the synthesized PP-PhSO3H exhibits a proton conductivity of up to 6.64 × 10-2 S cm-1 at 353 K and 98% relative humidity (RH). This value is almost 2 orders of magnitude higher than the corresponding value for its -SO3H-free analogue, PP-Ph, which is 1.72 × 10-4 S cm-1 when measured under the same condition. Consequently, matrix-mixed membranes (labeled PP-PhSO3H-PAN) were further prepared by mixing PP-PhSO3H with polyacrylonitrile (PAN) in different ratios to test its potential application in the proton-exchange membrane (PEM) fuel cell. The analysis results indicate that when the weight ratio of PP-PhSO3H/PAN is 3:1 [named PP-PhSO3H-PAN (3:1)], its proton conductivity can reach up to 5.05 × 10-2 S cm-1 at 353 K and 98% RH, which is even comparable with those of proton-conductive electrolytes currently used in PEM fuel cells. Furthermore, the continuous test demonstrates that the PP-PhSO3H-PAN (3:1) has long-life reusability. This research reveals that by using phosphazene and sulfonated multiple-amine modules as precursors, organic polymers with excellent proton conductivity for the assembly of matrix-mixed membranes in PEM fuel cells can be easily synthesized by a simple polymeric process.

3.
Soft Matter ; 18(29): 5518-5523, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35848897

RESUMO

Developing a facile strategy to construct low-cost and efficient proton-conductive electrolytes is pivotal in the practical application of proton exchange membrane (PEM) fuel cells. Herein, a polyamide with in-built -SO3H moieties, PA(PhSO3H)2, was synthesized via a simple one-pot polymeric acylation process. Investigations via electrochemical impedance spectroscopy (EIS) measurements revealed that the fabricated PA(PhSO3H)2 displays a proton conductivity of up to 5.54 × 10-2 S cm-1 at 353 K under 98% relative humidity (RH), which is more than 2 orders of magnitude higher than that of its -SO3H-free analogue PA(Ph)2 (2.38 × 10-4 S cm-1) under the same conditions. Therefore, after mixing with polyacrylonitrile (PAN) at different ratios, PA(PhSO3H)2-based matrix-mixed membranes were subsequently made and the analysis results revealed that the proton conductivity can reach up to 5.82 × 10-2 S cm-1 at 353 K and 98% RH when the weight ratio of PA(PhSO3H)2 : PAN is in 3 : 1 (labeled as PA(PhSO3H)2-PAN(3 : 1)), the value of which is comparable even to those of commercially available electrolytes that are used in PEM fuel cells. In addition, continuous testing shows that PA(PhSO3H)2-PAN(3 : 1) possesses long-life reusability. This work demonstrates that, utilizing the simple reaction of polymeric acylation with a sulfonated module as a precursor, highly effective proton-conductive membranes for PEM fuel cells can be achieved in a facile manner.

4.
Molecules ; 27(13)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35807357

RESUMO

Developing a low-cost and effective proton-conductive electrolyte to meet the requirements of the large-scale manufacturing of proton exchange membrane (PEM) fuel cells is of great significance in progressing towards the upcoming "hydrogen economy" society. Herein, utilizing the one-pot acylation polymeric combination of acyl chloride and amine precursors, a polyamide with in-built -SO3H moieties (PA-PhSO3H) was facilely synthesized. Characterization shows that it possesses a porous feature and a high stability at the practical operating conditions of PEM fuel cells. Investigations of electrochemical impedance spectroscopy (EIS) measurements revealed that the fabricated PA-PhSO3H displays a proton conductivity of up to 8.85 × 10-2 S·cm-1 at 353 K under 98% relative humidity (RH), which is more than two orders of magnitude higher than that of its -SO3H-free analogue, PA-Ph (6.30 × 10-4 S·cm-1), under the same conditions. Therefore, matrix-mixed membranes were fabricated by mixing with polyacrylonitrile (PAN) in different ratios, and the EIS analyses revealed that its proton conductivity can reach up to 4.90 × 10-2 S·cm-1 at 353 K and a 98% relative humidity (RH) when the weight ratio of PA-PhSO3H:PAN is 3:1 (labeled as PA-PhSO3H-PAN (3:1)), the value of which is even comparable with those of commercial-available electrolytes being used in PEM fuel cells. Additionally, continuous tests showed that PA-PhSO3H-PAN (3:1) possesses a long-life reusability. This work demonstrates, using the simple acylation reaction with the sulfonated module as precursor, that low-cost and highly effective proton-conductive electrolytes for PEM fuel cells can be facilely achieved.


Assuntos
Nylons , Prótons , Condutividade Elétrica , Eletrólitos , Polímeros
5.
Hum Immunol ; 71(1): 50-7, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19735687

RESUMO

Celiac disease (CD) is an autoimmune disorder that is triggered by an immune response to gluten in genetically predisposed individuals. Although considered a primary gastrointestinal disease, CD is now known to have widespread systemic manifestations. We attempted to define the nature and role of systemic cytokine levels in the pathophysiology of CD. Multiplex cytokine assays were performed on four different groups of adult patients; patients with active CD (ACD), patients on a gluten-free diet (GFD) with positive TTG IgA antibodies, patients on a GFD with negative antibodies, and those with refractory CD (RCD). The results were compared with values in healthy adult controls. Patients with active CD and those on GFD with positive antibodies had significantly higher levels of proinflammatory cytokines, such as interferon-gamma, interleukin (IL)-1beta, tumor necrosis factor-alpha, IL-6 and IL-8, and also T(h)-2 cytokines such as IL-4 and IL-10, compared with normal controls and patients on GFD without antibodies. Interestingly patients on GFD for less than 1 year had significantly higher levels of both proinflammatory cytokines and T(h)2 cytokines compared with the patients on GFD for more than 1 year. In addition, a statistically significant correlation between levels of TTG IgA titers and serum levels of T(h)-2 cytokines IL-4 (p < 0.001), IL-10 (p < 0.001) and inflammatory cytokines such as IL-1alpha (p < 0.001), IL-1beta (p < 0.005), and IL-8 (p < 0.05) was observed.


Assuntos
Doença Celíaca/sangue , Doença Celíaca/imunologia , Citocinas/sangue , Citocinas/imunologia , Adulto , Doença Celíaca/dietoterapia , Doença Celíaca/patologia , Dieta Livre de Glúten , Humanos , Imunoglobulina A/análise , Intestino Delgado/imunologia , Intestino Delgado/patologia , Transglutaminases/imunologia
6.
Hum Immunol ; 65(11): 1297-306, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15556680

RESUMO

Alloantigen specific CD8+CD28- T suppressor (TS) cells differ from naturally occurring CD4+CD25+ T-regulatory (natural TR) cells not only by their phenotype but also by their mechanism of action. Natural TR have been extensively studied, leading to the identification of characteristic "molecular markers" such as Forkhead box P3 (FOXP3), glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4). We have investigated the expression of these genes in alloantigen specific TS and CD4+CD25+ T regulatory (TR) cells and found that they are expressed at levels similar to those observed in natural TR. Furthermore, similar to natural CD4+CD25+ TR, antigen-specific CD8+CD28-CD62L+ TS cells have more suppressive capacity than CD8+CD28-CD62L- TS cells. In spite of these similarities, natural TR are not antigen-specific and inhibit other T cells by T cell-to-T cell interaction, whereas TS are antigen-specific and exert their inhibitory function by interacting with antigen-presenting cells and render them tolerogenic to other T cells. The molecular characterization of TS cells may contribute to a better understanding of mechanisms involved in inhibition of immune responses in autoimmunity, transplantation, and chronic viral infection.


Assuntos
Antígenos CD28/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Perfilação da Expressão Gênica , Receptores de Interleucina-2/imunologia , Subpopulações de Linfócitos T/imunologia , Biomarcadores/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular , Proteínas de Ligação a DNA/genética , Fatores de Transcrição Forkhead , Humanos , Isoantígenos/imunologia , Selectina L/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA