Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 994306, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237509

RESUMO

Cotton is a major fiber crop grown worldwide. Nitrogen (N) is an essential nutrient for cotton production and supports efficient crop production. It is a crucial nutrient that is required more than any other. Nitrogen management is a daunting task for plants; thus, various strategies, individually and collectively, have been adopted to improve its efficacy. The negative environmental impacts of excessive N application on cotton production have become harmful to consumers and growers. The 4R's of nutrient stewardship (right product, right rate, right time, and right place) is a newly developed agronomic practice that provides a solid foundation for achieving nitrogen use efficiency (NUE) in cotton production. Cropping systems are equally crucial for increasing production, profitability, environmental growth protection, and sustainability. This concept incorporates the right fertilizer source at the right rate, time, and place. In addition to agronomic practices, molecular approaches are equally important for improving cotton NUE. This could be achieved by increasing the efficacy of metabolic pathways at the cellular, organ, and structural levels and NUE-regulating enzymes and genes. This is a potential method to improve the role of N transporters in plants, resulting in better utilization and remobilization of N in cotton plants. Therefore, we suggest effective methods for accelerating NUE in cotton. This review aims to provide a detailed overview of agronomic and molecular approaches for improving NUE in cotton production, which benefits both the environment and growers.

2.
Environ Sci Pollut Res Int ; 27(35): 44528-44539, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32772285

RESUMO

Lead (Pb) is considered an important environmental contaminant due to its considerable toxicity to living organisms. It can enter and accumulate in plant tissues and become part of the food chain. In the present study, individual and combined effects of Bacillus sp. MN-54 and phosphorus (P) on maize growth and physiology were evaluated in Pb-contaminated soil. A pristine soil was artificially contaminated with two levels of Pb (i.e., 250 and 500 mg kg-1 dry soil) and was transferred to plastic pots. Bacillus sp. MN-54 treated and untreated maize (DK-6714) seeds were planted in pots. Recommended doses of nutrients (N and K) were applied in each pot while P was applied in selective pots. Results showed that Pb stress hampered the maize growth and physiological attributes in a concentration-dependent manner, and significant reductions in seedling emergence, shoot and root lengths, fresh and dry biomasses, leaf area, chlorophyll content, rate of photosynthesis, and stomatal conductance were recorded compared with control. Application of Bacillus sp. MN-54 or P particularly in combination significantly reduced the toxic effects of Pb on maize. At higher Pb level (500 mg kg-1), the combined application effectively reduced Pb uptake up to 42.4% and 50% by shoots, 30.8% and 33.9% by roots, and 18.4% and 26.2% in available Pb content in soil after 45 days and 90 days, respectively compared with that of control. Moreover, the use of Bacillus sp. MN-54 significantly improved the P uptake by maize plants by 44.4% as compared with that of control. Our findings suggest that the combined use of Bacillus sp. MN-54 and P could be effective and helpful in improving plant growth and Pb immobilization in Pb-contaminated soil.


Assuntos
Bacillus , Poluentes do Solo , Biodegradação Ambiental , Chumbo , Manganês , Fósforo , Raízes de Plantas/química , Radioisótopos , Solo , Poluentes do Solo/análise , Zea mays
3.
Environ Technol ; 40(19): 2567-2576, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29493396

RESUMO

Highly integrated nanocomposite of Graphene oxide (GO) and its derivatives with metal oxides is essential for enhanced performance for various applications. Tuning the morphology is an important aspect during nanomaterials synthesis; this has an amplifying influence upon physicochemical properties of advanced functional materials. In this research work, GO/TiO2 nanotube composites have been successfully synthesized via alkaline hydrothermal treatment method by augmenting GO layers with two different phases of TiO2 (anatase and rutile) nanoparticles, followed by the hydrothermal treatment that also have caused reduction of GO to reduced GO (RGO). The morphology of the as-prepared samples appeared to be nanotubes with a large aspect ratio (length to diameter). The synthesized materials have been characterized using various techniques to determine their morphological and functional properties. Large surface area (158 m2/g) nanotube composites found accountable as effective disinfectant for water containing microorganisms. The antimicrobial activity of the synthesized composites was examined by disk diffusion method and optical density for bacterial growth using two different bacterial species; Escherichia Coli (E.coli, Gram-negative) and Staphylococcus Aureus (Methicillin-resistant Staphylococcus aureus, Gram-positive). The antibacterial study revealed that, the anatase phase RGO/TiO2 nanotube composites manifested appreciable effect on both bacteria as compared to rutile phase RGO/TiO2 nanotubecomposite.


Assuntos
Grafite , Staphylococcus aureus Resistente à Meticilina , Nanocompostos , Nanotubos , Óxidos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...