Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Env Sci Adv ; 3(5): 751-762, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38721024

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) pose health risks to children, potentially resulting in stunted growth, obesity, and cognitive deficits, but lack of reliable and noninvasive means to measure PAHs results in poor understanding of exposure patterns and sources in this vulnerable population. In this study, 24 children aged ∼7 years (9 boys and 15 girls) from Montevideo, Uruguay wore silicone wristbands for 8 days to monitor the exposure of 27 PAHs. Wristbands were extracted using a modified ethyl acetate tandem solid phase extraction clean up and then analyzed via gas chromatography with tandem mass spectrometry. This analysis has reported LODs for 27 PAHs between 0.05 and 3.91 µg L-1. Eighteen PAHs were detected in >50% of the samples with concentration medians ranging 1.2-16.3 ng g-1 of wristband. Low molecular weight PAHs (2-3 rings) such as naphthalene and its alkyl derivatives were highly correlated (0.7-0.9) in the wristbands, suggesting exposure from related sources. Exposure source exploration focused on secondhand tobacco smoke, potentially through caregivers who reported on smoking habits in an associated survey. A principal components analysis (PCA) was conducted to examine patterns in PAH compounds detected in the wristbands; subsequently, the resulting components were compared according to current smoking among caregivers. The PCA analysis revealed a grouping of participants based on higher exposure of 1-methyl naphthalene, pyrene, fluoranthene, 1-methylphenanthrene, dibenzothiophene and 2-phenyl naphthalene. The derived components did relate with parental smoking, suggesting that some participants experienced exposure to a common source of certain PAHs outside of parental smoking. This is the first study to assess PAH exposure in young children from South America. Using wristbands, our study indicates exposure to multiple, potentially harmful chemicals. Wristbands could provide a comprehensive picture of PAH exposure in children, complementing other non-invasive biomonitoring approaches.

2.
Sci Total Environ ; : 172824, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38688370

RESUMO

A recently synthesized aminated 3,4-dioxygenated xanthone (Xantifoul2) was found to have promising antifouling (AF) effects against the settlement of the macrofouler Mytilus galloprovincialis larvae. Preliminary assessment indicated that Xantifoul2 has reduced ecotoxicological impacts: e.g., being non-toxic to the marine crustacea Artemia salina (<10 % mortality at 50 µM) and showing low bioconcentration factor in marine organisms. In order to meet the EU Biocidal Product Regulation, a preliminary hazard assessment of this new nature-inspired antifouling (NIAF) agent was accomplished in this work. Xantifoul2 did not affect the swimming ability of the planktonic crustacean Daphnia magna, the growth of the diatom Phaeodactylum tricornutum, and the cellular respiration of luminescent Gram-negative bacteria Vibrio fischeri, supporting the low toxicity towards several non-target marine species. Regarding human cytotoxicity, Xantifoul2 did not affect the cell viability of retinal human cells (hTERT-RPE-1) and lipidomic studies revealed depletion of lipids involved in cell death, membrane modeling, lipid storage, and oxidative stress only at a high concentration (10 µM). Accelerated degradation studies in water were conducted under simulated sunlight to allow the understanding of putative transformation products (TPs) that could be generated in the aquatic ecosystems. Both Xantifoul2 and photolytic-treated Xantifoul2 in the aqueous matrix were therefore evaluated on several nuclear receptors (NRs). The results of this preliminary hazard assessment of Xantifoul2, combined with the high degradation rates in water, provide strong evidence of the safety of this AF agent under the evaluated conditions, and provide the support for future validation studies before this compound can be introduced in the market.

3.
J Hazard Mater ; 469: 133912, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38447366

RESUMO

Graphene and zero-valent-iron based nanohybrid (rGO-nZVI NH) with oxidant H2O2 can remove perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) through adsorption-degradation in a controlled aquatic environment. In this study, we evaluated how and to what extent different environmental and operational parameters, such as initial PFAS concentration, H2O2 dose, pH, ionic strength, and natural organic matter (NOM), influenced the removal of PFOS and PFOA by rGO-nZVI. With the increase in initial PFAS concentration (from 0.4 to 50 ppm), pH (3 to 9), ionic strength (0 to 100 mM), and NOM (0 to 10 ppm), PFOS removal reduced by 20%, 30%, 2%, and 6%, respectively, while PFOA removal reduced by 54%, 76%, 11%, and 33% respectively. In contrast, PFOS and PFOA removal increased by 10% and 41%, respectively, with the increase in H2O2 (from 0 to 1 mM). Overall, the effect of changes in environmental and operational parameters was more pronounced for PFOA than PFOS. Mechanistically, •OH radical generation and availability showed a profound effect on PFOA removal. Also, the electrostatic interaction between rGO-nZVI NH and deprotonated PFAS compounds was another key factor for removal. Most importantly, our study confirms that rGO-nZVI in the presence of H2O2 can degrade both PFOS and PFOA to some extent by identifying the important by-products such as acetate, formate, and fluoride.

4.
Environ Sci Technol ; 58(5): 2468-2478, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38252456

RESUMO

Wastewater is a source for many contaminants of emerging concern (CECs), and surface waters receiving wastewater discharge often serve as source water for downstream drinking water treatment plants. Nontargeted analysis and suspect screening methods were used to characterize chemicals in residence-time-weighted grab samples and companion polar organic chemical integrative samplers (POCIS) collected on three separate hydrologic sampling events along a surface water flow path representative of de facto water reuse. The goal of this work was to examine the fate of CECs along the study flow path as water is transported from wastewater effluent through drinking water treatment. Grab and POCIS samples provided a comparison between residence-time-weighted single-point and integrative sample results. This unique and rigorous study design, coupled with advanced analytical chemistry tools, provided important insights into chemicals found in drinking water and their potential sources, which can be used to help prioritize chemicals for further study. K-means clustering analysis was used to identify patterns in chemical occurrences across both sampling sites and sampling events. Chemical features that occurred frequently or survived drinking water treatment were prioritized for identification, resulting in the probable identification of over 100 CECs in the watershed and 28 CECs in treated drinking water.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Água Potável/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Compostos Orgânicos/análise
5.
Environ Toxicol Chem ; 43(4): 847-855, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38153236

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are widely used in many industrial and domestic applications, which has resulted in unintentional human exposures and bioaccumulation in blood and other organs. Perfluorooctane sulfonate (PFOS) is among the most prevalent PFAS in the environment and has been postulated to affect brain functions in exposed organisms. However, the impacts of PFOS in early neural development have not been well described. We used zebrafish larvae to assess the effects of PFOS on two fundamental complex behaviors, prey capture and learning. Zebrafish exposed to PFOS concentrations ranging from 2 to 20 µM for differing 48-h periods were viable through early larval stages. In addition, PFOS uptake was unaffected by the presence of a chorion. We employed two different experimental paradigms; first we assessed the impacts of increasing organismal PFOS bioaccumulation on prey capture and learning, and second, we probed stage-specific sensitivity to PFOS by exposing zebrafish at different developmental stages (0-2 vs. 3-5 days post fertilization). Following both assays we measured the amount of PFOS present in each larva and found that PFOS levels varied in larvae from different groups within each experimental paradigm. Significant negative correlations were observed between larval PFOS accumulation and percentage of captured prey, whereas nonsignificant negative correlations were observed between PFOS accumulation and experienced-induced prey capture learning. These findings suggest that PFOS accumulation negatively affects larval zebrafish's ability to perform complicated multisensory behaviors and highlights the potential risks of PFOS exposure to animals in the wild, with implications for human health. Environ Toxicol Chem 2024;43:847-855. © 2023 SETAC.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Perciformes , Poluentes Químicos da Água , Animais , Humanos , Peixe-Zebra , Larva , Fluorocarbonos/toxicidade , Ácidos Alcanossulfônicos/toxicidade , Poluentes Químicos da Água/toxicidade
6.
J Chem Inf Model ; 63(23): 7299-7319, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37981739

RESUMO

Per and polyfluoroalkyl substances (PFAS) present a unique challenge to remediation techniques because their strong carbon-fluorine bonds make them difficult to degrade. This review explores the use of in silico enzymatic design as a potential PFAS degradation technique. The scope of the enzymes included is based on currently known PFAS degradation techniques, including chemical redox systems that have been studied for perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) defluorination, such as those that incorporate hydrated electrons, sulfate, peroxide, and metal catalysts. Bioremediation techniques are also discussed, namely the laccase and horseradish peroxidase systems. The redox potential of known reactants and enzymatic radicals/metal-complexes are then considered and compared to potential enzymes for degrading PFAS. The molecular structure and reaction cycle of prospective enzymes are explored. Current knowledge and techniques of enzyme design, particularly radical-generating enzymes, and application are also discussed. Finally, potential routes for bioengineering enzymes to enable or enhance PFAS remediation are considered as well as the future outlook for computational exploration of enzymatic in situ bioremediation routes for these highly persistent and globally distributed contaminants.


Assuntos
Fluorocarbonos , Estudos Prospectivos , Caprilatos , Peróxidos , Elétrons
7.
Artigo em Inglês | MEDLINE | ID: mdl-37790729

RESUMO

Concerns surrounding potential health and environmental impacts of per- and polyfluoroalkyl substances (PFAS) are growing at tremendous rates because adverse health impacts are expected with trace-level exposures. Extreme measures are required to mitigate potential PFAS contamination and minimize exposures. Extensive PFAS use results in the release of diverse PFAS species from domestic, industrial, and municipal effluents to wastewater, which partition to biosolids throughout secondary treatment. Biosolids generated during municipal wastewater treatment are a major environmental source of PFAS due to prevailing disposal practices as fertilizers. Pyrolysis is emerging as a viable, scalable technology for PFAS removal from biosolids while retaining nutrients and generating renewable, raw materials for energy generation. Despite early successes of pyrolysis in PFAS removal, significant unknowns remain about PFAS and transformation product fates in pyrolysis products and emissions. Applicable PFAS sampling methods, analytical workflows, and removal assessments are currently limited to a subset of high-interest analytes and matrices. Further, analysis of exhaust gases, particulate matter, fly ashes, and other pyrolysis end-products remain largely unreported or limited due to cost and sampling limitations. This paper identifies critical knowledge gaps on the pyrolysis of biosolids that must be addressed to assess the effectiveness of PFAS removal during pyrolysis treatment.

8.
Nutrients ; 15(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37836382

RESUMO

It is hypothesized that garlic, Allium sativum, might protect against oxidative stress that causes damage to cells and tissues leading to the development of various health conditions including cancer. However, it is not known whether garlic's potential anticancer benefits differ by form of garlic consumed. This study aimed to quantify and compare the in vitro antioxidant and antiproliferative activity of several garlic forms in water and alcohol extracts including fresh garlic, fresh garlic set aside, heated garlic, heated garlic set aside, garlic powder, black garlic, two commercially available garlic supplements. Antioxidant activity of different garlic forms were measured using three assays: DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) assay, superoxide assay, and hydroxyl assay. In vitro effects of garlic extracts were investigated against the most common lung cancer subtypes: H520, H1975, and A549 cell lines using the sulforhodamine B (SRB) assay. Among free radical scavenging assays, Garlicin®, a commercially available supplement, displayed high antioxidant activity in water and alcohol extracts (DPPH assay: 2.02 mg AAE (mg ascorbic acid equivalent)/g garlic and 3.53 mg AAE/g garlic, respectively; superoxide assay: 6.73 mg AAE/g garlic and 7.13 mg AAE/g garlic, respectively). In the hydroxyl assay, water extract of fresh garlic crushed and set aside for 10 min showed the highest antioxidant activity. Garlicin® alcohol extract and fresh garlic water extracts strongly inhibited the proliferation of H1975, A549 and H520 cells. Other forms of garlic including garlic powder and black garlic exhibited low antioxidant and antiproliferative activity. Our results demonstrate that the preparation and processing methods of garlic may lead to different antioxidant benefits.


Assuntos
Antioxidantes , Alho , Antioxidantes/metabolismo , Alho/metabolismo , Superóxidos , Pós , Extratos Vegetais/farmacologia , Água
9.
Environ Health (Wash) ; 1(2): 110-120, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37614295

RESUMO

The SH-SY5Y, neuroblastoma cell line, is a common in vitro model used to study physiological neuronal function and the neuronal response to different stimuli, including exposure to toxic chemicals. These cells can be differentiated to neuron-like cells by administration of various reagents, including retinoic acid or phorbol-12-myristate-13-acetate. Despite their common use, there is an incomplete understanding of the molecular changes that occur during differentiation. Therefore, there is a critical need to fully understand the molecular changes that occur during differentiation to properly study neurotoxicity in response to various environmental exposures. Previous studies have investigated the proteome and transcriptome during differentiation; however, the regulation of the cellular lipidome in this process is unexplored. In this work, we conducted liquid chromatography-mass spectrometry (LC-MS)-based untargeted lipidomics in undifferentiated and differentiated SH-SY5Y cells, induced by retinoic acid. We show that there are global differences between the cellular lipidomes of undifferentiated and differentiated cells. Out of thousands of features detected in positive and negative electrospray ionization modes, 44 species were identified that showed significant differences (p-value ≤0.05, fold change ≥2) in differentiated cells. Identification of these features combined with targeted lipidomics highlighted the accumulation of phospholipids, sterols, and sphingolipids during differentiation while triacylglycerols were depleted. These results provide important insights into lipid-related changes that occur during cellular differentiation of SH-5YSY cells and emphasize the need for the detailed characterization of biochemical differences that occur during differentiation while using this in vitro model for assessing ecological impacts of environmental pollutants.

10.
Sci Total Environ ; 893: 164707, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37301382

RESUMO

The lack of carefully optimized extraction techniques for the analysis of compounds with diverse polarities limits the identification of toxic pollutants in aqueous environmental matrices, particularly those that are considered persistent and mobile organic compounds (PMOCs). Tailored extraction techniques for specific classes of chemicals often result in very low to no extraction of either very polar or relatively non-polar chemicals, depending on the sorbent used. Hence, it is crucial to develop a balanced extraction for a wider range of polarity, especially for non-target analysis of chemical residues, in order to capture the occurrence of the full profile of micropollutants. Herein, a tandem solid-phase extraction (SPE) technique incorporating both hydrophilic-lipophilic balance (HLB) and mixed-mode cation exchange (MCX) sorbents was developed to extract and analyze 60 model compounds with a wide range of polarities (log Kow from -1.9 to 5.5) from untreated sewage matrices. Extraction efficiencies were assessed in NanoPure™ water and untreated sewage samples; 51 compounds in NanoPure™ water and 44 compounds in untreated sewage had ≥60 % extraction recoveries using the developed tandem SPE method. The method limits of detection ranged from 0.25 to 88 ng/L in untreated sewage matrix. The applicability of the extraction method was demonstrated in untreated wastewater samples; using the tandem SPE for suspect screening analysis captured an additional 22 compounds that were not extracted when using the HLB sorbent only. The optimized SPE method was also evaluated for the extraction of per- and polyfluoroalkyl substances (PFAS) by analyzing the same sample extracts under negative electrospray ionization liquid chromatography-tandem mass spectrometry (LC-MS/MS). The wastewater samples revealed the presence of sulfonamide-, sulfonic-, carboxylic-, and fluorotelomer sulfonic- PFAS with chain lengths 8, 4-8, 4-9, and 8, respectively, indicating that the tandem SPE procedure provides an efficient one-step extraction for the analysis of PMOCs that include pharmaceuticals, pesticides, and PFAS.

11.
Anal Chem ; 95(13): 5484-5488, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36946571

RESUMO

Fluorine nuclear magnetic resonance (19F-NMR) spectroscopy has been shown to be a powerful tool capable of quantifying the total per- and polyfluoroalkyl substances (PFAS) in a complex sample. The technique relies on the characteristic terminal -CF3 shift (-82.4 ppm) in the alkyl chain for quantification and does not introduce bias due to sample preparation or matrix effects. Traditional quantitative analytical techniques for PFAS, such as liquid chromatography-mass spectrometry (LC-MS) and combustion ion chromatography (CIC), contain inherent limitations that make total fluorine analysis challenging. Here, we report a sensitive 19F-NMR method for the analysis of total PFAS, with a limit of detection of 99.97 nM, or 50 µg/L perfluorosulfonic acid. To demonstrate the capabilities of 19F-NMR, the technique was compared to two commonly used methods for PFAS analysis: total oxidizable precursor (TOP) assay and LC-high resolution MS analysis for targeted quantification and suspect screening. In both cases, the 19F-NMR analyses detected higher total PFAS quantities than either the TOP assay (63%) or LC-MS analyses (65%), suggesting that LC-MS and TOP assays can lead to underreporting of PFAS. Importantly, the 19F-NMR detected trifluoroacetic acid at a concentration more than five times the total PFAS concentration quantified using LC-MS in the wastewater sample. Therefore, the use of 19F-NMR to quantify the total PFAS in highly complex samples can be used to complement classic TOP or LC-MS approaches for more accurate reporting of PFAS contamination in the environment.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Flúor/química , Ácido Trifluoracético , Cromatografia Líquida , Espectroscopia de Ressonância Magnética/métodos , Fluorocarbonos/análise , Poluentes Químicos da Água/análise
12.
Environ Toxicol Chem ; 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36582150

RESUMO

Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are important environmental contaminants. Nonetheless, what drives the evolution, spread, and transmission of antibiotic resistance dissemination is still poorly understood. The abundance of ARB and ARGs is often elevated in human-impacted areas, especially in environments receiving fecal wastes, or in the presence of complex mixtures of chemical contaminants, such as pharmaceuticals and personal care products. Self-replication, mutation, horizontal gene transfer, and adaptation to different environmental conditions contribute to the persistence and proliferation of ARB in habitats under strong anthropogenic influence. Our review discusses the interplay between chemical contaminants and ARB and their respective genes, specifically in reference to co-occurrence, potential biostimulation, and selective pressure effects, and gives an overview of mitigation by existing man-made and natural barriers. Evidence and strategies to improve the assessment of human health risks due to environmental antibiotic resistance are also discussed. Environ Toxicol Chem 2023;00:1-16. © 2022 SETAC.

13.
Molecules ; 27(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36014486

RESUMO

Antifouling (AF) coatings containing booster biocides are used worldwide as one of the most cost-effective ways to prevent the attachment of marine organisms to submerged structures. Nevertheless, many of the commercial biocides, such as Econea® (tralopyril), are toxic in marine environments. For that reason, it is of extreme importance that new efficient AF compounds that do not cause any harm to non-target organisms and humans are designed. In this study, we measured the half-maximal inhibitory concentration (IC50) of a promising nature-inspired AF compound, a triazolyl glycosylated chalcone (compound 1), in an immortalized human retinal pigment epithelial cell line (hTERT-RPE-1) and compared the results with the commercial biocide Econea®. We also investigated the effects of these biocides on the cellular lipidome following an acute (24 h) exposure using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF/MS). Our results showed that compound 1 did not affect viability in hTERT-RPE-1 cells at low concentrations (1 µM), in contrast to Econea®, which caused a 40% reduction in cell viability. In total, 71 lipids were found to be regulated upon exposure to 10 µM of both compounds. Interestingly, both compounds induced changes in lipids involved in cell death, membrane modeling, lipid storage, and oxidative stress, but often in opposing directions. In general, Econea® exposure was associated with an increase in lipid concentrations, while compound 1 exposure resulted in lipid depletion. Our study showed that exposure to human cells at sublethal Econea® concentrations results in the modulation of several lipids that are linked to cell death and survival.


Assuntos
Chalcona , Chalconas , Desinfetantes , Poluentes Químicos da Água , Chalcona/análise , Chalcona/farmacologia , Chalconas/análise , Desinfetantes/toxicidade , Humanos , Lipidômica , Lipídeos , Pirróis , Poluentes Químicos da Água/química
14.
J Hazard Mater ; 436: 129120, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35643010

RESUMO

The fate, effects, and treatment of per- and polyfluoroalkyl substances (PFAS), an anthropogenic class of chemicals used in industrial and commercial production, are topics of great interest in recent research and news cycles. This interest stems from the ubiquity of PFAS in the global environment as well as their significant toxicological effects in humans and wildlife. Research on toxicity, sequestration, removal, and degradation of PFAS has grown rapidly, leading to a flood of valuable knowledge that can get swamped out in the perpetual rise in the number of publications. Selected papers from the Journal of Hazardous Materials between January 2018 and May 2022 on the toxicity, sequestration, and degradation of PFAS are reviewed in this article and made available as open-access publications for one year, in order to facilitate the distribution of critical knowledge surrounding PFAS. This review discusses routes of toxicity as observed in mammalian and cellular models, and the observed human health effects in exposed communities. Studies that evaluate of toxicity through in-silico approaches are highlighted in this paper. Removal of PFAS through modified carbon sorbents, nanoparticles, and anion exchange materials are discussed while comparing treatment efficiencies for different classes of PFAS. Finally, various biotic and abiotic degradation techniques, and the pathways and mechanisms involved are reviewed to provide a better understanding on the removal efficiencies and cost effectiveness of existing treatment strategies.


Assuntos
Fluorocarbonos , Fluorocarbonos/química , Fluorocarbonos/toxicidade , Substâncias Perigosas , Humanos
15.
Chem Res Toxicol ; 35(7): 1277-1288, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35696490

RESUMO

Per- and poly-fluorinated substances (PFASs) are organic pollutants that have been linked to numerous health effects, including diabetes, cancers, and dysregulation of the endocrine system. This study aims to develop a liquid chromatography with tandem mass spectrometry (LC-MS/MS) assay to measure changes in 17 hormones in H295R cell line (a steroid producing adrenocortical cells) upon exposure to PFASs. Due to the challenges in the analysis of steroid hormones using electrospray ionization MS, a chemical derivatization method was employed to achieve 0.07-2 µg/L detection limits in LC-MS/MS. Furthermore, a 10-fold concentration factor through solid-phase extraction (SPE) allows for consistent sub-parts per billion detections. Optimization of the derivatization conditions showed doubly-derivatized products in some hormone analytes, including progesterone, corticosterone, and cortisol, and gave improved ionization efficiency up to 20-fold higher signal than the singly-derivatized product. The use of SPE for sample cleanup to analyze hormones from cellular media using weak anion exchange sorbent yielded 80-100% recovery for the 17 targeted hormones. The method was validated by exposing H295R cells to two known endocrine disruptors, forskolin and prochloraz, which showed expected changes in hormones. An initial exposure of H295R cells with various PFAS standards and their mixtures at 1 µM showed significant increases in progestogens with some PFAS treatments, which include PFBS, PFHxA, PFOS, PFDA, and PFDS. In addition, modest changes in hormone levels were observed in cells treated with other sulfonated or carboxylated headgroup PFASs. This sensitive LC-MS/MS method for hormone analysis in H295R cells will allow for the investigations of the alterations in the hormone production caused by exposure to various environmental insults in cell-based assays and other in vitro models.


Assuntos
Fluorocarbonos , Cromatografia Líquida/métodos , Fluorocarbonos/análise , Progesterona , Esteroides/metabolismo , Espectrometria de Massas em Tandem/métodos
16.
Environ Sci Technol ; 56(21): 14982-14993, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35759608

RESUMO

Wastewater-based surveillance (WBS) for disease monitoring is highly promising but requires consistent methodologies that incorporate predetermined objectives, targets, and metrics. Herein, we describe a comprehensive metagenomics-based approach for global surveillance of antibiotic resistance in sewage that enables assessment of 1) which antibiotic resistance genes (ARGs) are shared across regions/communities; 2) which ARGs are discriminatory; and 3) factors associated with overall trends in ARGs, such as antibiotic concentrations. Across an internationally sourced transect of sewage samples collected using a centralized, standardized protocol, ARG relative abundances (16S rRNA gene-normalized) were highest in Hong Kong and India and lowest in Sweden and Switzerland, reflecting national policy, measured antibiotic concentrations, and metal resistance genes. Asian versus European/US resistomes were distinct, with macrolide-lincosamide-streptogramin, phenicol, quinolone, and tetracycline versus multidrug resistance ARGs being discriminatory, respectively. Regional trends in measured antibiotic concentrations differed from trends expected from public sales data. This could reflect unaccounted uses, captured only by the WBS approach. If properly benchmarked, antibiotic WBS might complement public sales and consumption statistics in the future. The WBS approach defined herein demonstrates multisite comparability and sensitivity to local/regional factors.


Assuntos
Esgotos , Águas Residuárias , RNA Ribossômico 16S/genética , Genes Bacterianos , Antibacterianos/farmacologia
17.
Cancers (Basel) ; 14(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35625985

RESUMO

ET resistance is a critical problem for estrogen receptor-positive (ER+) breast cancer. In this study, we have investigated how alterations in sphingolipids promote cell survival in ET-resistant breast cancer. We have performed LC-MS-based targeted sphingolipidomics of tamoxifen-sensitive and -resistant MCF-7 breast cancer cell lines. Follow-up studies included treatments of cell lines and patient-derived xenograft organoids (PDxO) with small molecule inhibitors; cytometric analyses to measure cell death, proliferation, and apoptosis; siRNA-mediated knockdown; RT-qPCR and Western blot for gene and protein expression; targeted lipid analysis; and lipid addback experiments. We found that tamoxifen-resistant cells have lower levels of ceramides and hexosylceramides compared to their tamoxifen-sensitive counterpart. Upon perturbing the sphingolipid pathway with small molecule inhibitors of key enzymes, we identified that CERK is essential for tamoxifen-resistant breast cancer cell survival, as well as a fulvestrant-resistant PDxO. CERK inhibition induces ceramide-mediated cell death in tamoxifen-resistant cells. Ceramide-1-phosphate (C1P) partially reverses CERK inhibition-induced cell death in tamoxifen-resistant cells, likely through lowering endogenous ceramide levels. Our findings suggest that ET-resistant breast cancer cells maintain lower ceramide levels as an essential pro-survival mechanism. Consequently, ET-resistant breast cancer models have a unique dependence on CERK as its activity can inhibit de novo ceramide production.

18.
Anal Bioanal Chem ; 414(15): 4497-4507, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35608671

RESUMO

Land application of treated sewage sludge (also known as biosolids) is considered a sustainable route of disposal because it reduces waste loading into landfills while improving soil health. However, this waste management practice can introduce contaminants from biosolids, such as per- and polyfluoroalkyl substances (PFAS), into the environment. PFAS have been observed to be taken up by plants, accumulate in humans and animals, and have been linked to various negative health effects. There is limited information on the nature and amounts of PFAS introduced from biosolids that have undergone different treatment processes. Therefore, this study developed analytical techniques to improve the characterization of PFAS in complex biosolid samples. Different clean-up techniques were evaluated and applied to waste-activated sludge (WAS) and lime-stabilized primary solids (PS) prior to targeted analysis and suspect screening of biosolid samples. Using liquid chromatography with high-resolution mass spectrometry, a workflow was developed to achieve parallel quantitative targeted analysis and qualitative suspect screening. This study found that concentrations of individual PFAS (27 targeted analytes) can range from 0.6 to 84.6 ng/g in WAS (average total PFAS = 241.4 ng/g) and from 1.6 to 33.8 ng/g in PS (average total PFAS = 72.1 ng/g). The suspect screening workflow identified seven additional PFAS in the biosolid samples, five of which have not been previously reported in environmental samples. Some of the newly identified compounds are a short-chain polyfluorinated carboxylate (a PFOS replacement), a diphosphate ester (a PFOA precursor), a possible transformation product of carboxylate PFAS, and an imidohydrazide which contains a sulfonate and benzene ring.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Ácidos Alcanossulfônicos/análise , Animais , Biossólidos , Fluorocarbonos/análise , Esgotos/química , Solo , Poluentes Químicos da Água/análise , Fluxo de Trabalho
19.
Chem Res Toxicol ; 35(4): 694-702, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35380827

RESUMO

Per- and polyfluorinated alkyl substances (PFAS) are a class of widely used compounds in an array of commercial and industrial applications. Due to their extensive use and chemical stability, PFAS persist in the environment and bioaccumulate in humans and wildlife. PFAS exposure have been linked to several negative health effects, including the formation of various cancers, disruption of the endocrine system, and obesity. However, there is a major gap in understanding how structural differences in PFAS impact their interactions within a biological system. In this study, we examined the toxicity of PFAS with differences in chain length, head group, and degree of fluorination in human retinal epithelial cells. We focused on fluorotelomeric and fully fluorinated sulfonates and carboxylates and measured their uptake. Our results showed that sulfonates are taken up at higher levels as compared to their fluorotelomer and carboxylate counterparts. Furthermore, PFAS with 8 and 10 carbons (C8 and C10) are taken up at a higher level compared to those with six carbons (C6). We also investigated the role of the fatty acid transporter CD36 in PFAS uptake and found that increased CD36 levels result in higher levels of PFAS in cells. Overall, our results suggest that the head group structure of PFAS impacts toxicity, with sulfonates inducing a higher decrease in cell viability (∼50%) than carboxylates. Our results also link the activity of CD36 to PFAS uptake into cells.


Assuntos
Fluorocarbonos , Ácidos Carboxílicos , Ácidos Graxos , Fluorocarbonos/toxicidade , Humanos
20.
ACS Chem Biol ; 17(4): 822-828, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35353506

RESUMO

Sphingolipids are key signaling lipids and their dysregulation has been associated with various cellular processes. We have previously shown significant changes in sphingolipids in therapy-induced senescence, a state of cell cycle arrest as a response to chemotherapy, including the accumulation of ceramides, and provided evidence suggesting that ceramide processing is important for this process. Herein, we conducted a focused small molecule inhibitor screen targeting the sphingolipid pathway, which highlighted a new lipid regulator of therapy-induced senescence. Among the inhibitors tested, the inhibition of ceramide kinase by NVP-231 reduced the levels of senescent cells. Ceramide kinase knockdown exhibited similar effects, strongly supporting the involvement of ceramide kinase during this process. We showed that ceramide-1-phosphate was upregulated in therapy-induced senescence and that NVP-231 reduced ceramide-1-phosphate levels in different cell line models of therapy-induced senescence. Finally, ceramide-1-phosphate addition to NVP-231-treated cells reversed the effects of NVP-231 during senescence. Overall, our results identify a previously unknown lipid player in therapy-induced senescence and highlight a potential targetable enzyme to reduce the levels of therapy-induced senescent cells.


Assuntos
Ceramidas , Esfingolipídeos , Pontos de Checagem do Ciclo Celular , Senescência Celular , Ceramidas/metabolismo , Ceramidas/farmacologia , Fosfatos , Transdução de Sinais , Esfingolipídeos/metabolismo , Esfingolipídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...