Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Nat Methods ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744918

RESUMO

The combination of native electrospray ionization with top-down fragmentation in mass spectrometry (MS) allows simultaneous determination of the stoichiometry of noncovalent complexes and identification of their component proteoforms and cofactors. Although this approach is powerful, both native MS and top-down MS are not yet well standardized, and only a limited number of laboratories regularly carry out this type of research. To address this challenge, the Consortium for Top-Down Proteomics initiated a study to develop and test protocols for native MS combined with top-down fragmentation of proteins and protein complexes across 11 instruments in nine laboratories. Here we report the summary of the outcomes to provide robust benchmarks and a valuable entry point for the scientific community.

2.
PLoS Biol ; 22(1): e3002462, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38289969

RESUMO

Mutations in the gene encoding Cu-Zn superoxide dismutase 1 (SOD1) cause a subset of familial amyotrophic lateral sclerosis (fALS) cases. A shared effect of these mutations is that SOD1, which is normally a stable dimer, dissociates into toxic monomers that seed toxic aggregates. Considerable research effort has been devoted to developing compounds that stabilize the dimer of fALS SOD1 variants, but unfortunately, this has not yet resulted in a treatment. We hypothesized that cyclic thiosulfinate cross-linkers, which selectively target a rare, 2 cysteine-containing motif, can stabilize fALS-causing SOD1 variants in vivo. We created a library of chemically diverse cyclic thiosulfinates and determined structure-cross-linking-activity relationships. A pre-lead compound, "S-XL6," was selected based upon its cross-linking rate and drug-like properties. Co-crystallographic structure clearly establishes the binding of S-XL6 at Cys 111 bridging the monomers and stabilizing the SOD1 dimer. Biophysical studies reveal that the degree of stabilization afforded by S-XL6 (up to 24°C) is unprecedented for fALS, and to our knowledge, for any protein target of any kinetic stabilizer. Gene silencing and protein degrading therapeutic approaches require careful dose titration to balance the benefit of diminished fALS SOD1 expression with the toxic loss-of-enzymatic function. We show that S-XL6 does not share this liability because it rescues the activity of fALS SOD1 variants. No pharmacological agent has been proven to bind to SOD1 in vivo. Here, using a fALS mouse model, we demonstrate oral bioavailability; rapid engagement of SOD1G93A by S-XL6 that increases SOD1G93A's in vivo half-life; and that S-XL6 crosses the blood-brain barrier. S-XL6 demonstrated a degree of selectivity by avoiding off-target binding to plasma proteins. Taken together, our results indicate that cyclic thiosulfinate-mediated SOD1 stabilization should receive further attention as a potential therapeutic approach for fALS.


Assuntos
Esclerose Lateral Amiotrófica , Animais , Camundongos , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Cisteína/genética , Mutação , Superóxido Dismutase/genética , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética
3.
J Phys Chem B ; 127(25): 5553-5565, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37311097

RESUMO

Characterizing structures of protein complexes and their disease-related aberrations is essential to understanding molecular mechanisms of many biological processes. Electrospray ionization coupled with hybrid ion mobility/mass spectrometry (ESI-IM/MS) methods offer sufficient sensitivity, sample throughput, and dynamic range to enable systematic structural characterization of proteomes. However, because ESI-IM/MS characterizes ionized protein systems in the gas phase, it generally remains unclear to what extent the protein ions characterized by IM/MS have retained their solution structures. Here, we discuss the first application of our computational structure relaxation approximation [Bleiholder, C.; et al. J. Phys. Chem. B 2019, 123 (13), 2756-2769] to assign structures of protein complexes in the range from ∼16 to ∼60 kDa from their "native" IM/MS spectra. Our analysis shows that the computed IM/MS spectra agree with the experimental spectra within the errors of the methods. The structure relaxation approximation (SRA) indicates that native backbone contacts appear largely retained in the absence of solvent for the investigated protein complexes and charge states. Native contacts between polypeptide chains of the protein complex appear to be retained to a comparable extent as contacts within a folded polypeptide chain. Our computations also indicate that the hallmark "compaction" often observed for protein systems in native IM/MS measurements appears to be a poor indicator of the extent to which native residue-residue interactions are lost in the absence of solvent. Further, the SRA indicates that structural reorganization of the protein systems in IM/MS measurements appears driven largely by remodeling of the protein surface that increases its hydrophobic content by approximately 10%. For the systems studied here, this remodeling of the protein surface appears to occur mainly by structural reorganization of surface-associated hydrophilic amino acid residues not associated with ß-strand secondary structure elements. Properties related to the internal protein structure, as assessed by void volume or packing density, appear unaffected by remodeling of the surface. Taken together, the structural reorganization of the protein surface appears to be generic in nature and to sufficiently stabilize protein structures to render them metastable on the time scale of IM/MS measurements.


Assuntos
Proteínas de Membrana , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização por Electrospray/métodos , Aminoácidos , Íons/química , Solventes
4.
Bioinformatics ; 38(7): 2015-2021, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35040929

RESUMO

MOTIVATION: Mass spectrometry imaging (MSI) provides rich biochemical information in a label-free manner and therefore holds promise to substantially impact current practice in disease diagnosis. However, the complex nature of MSI data poses computational challenges in its analysis. The complexity of the data arises from its large size, high-dimensionality and spectral nonlinearity. Preprocessing, including peak picking, has been used to reduce raw data complexity; however, peak picking is sensitive to parameter selection that, perhaps prematurely, shapes the downstream analysis for tissue classification and ensuing biological interpretation. RESULTS: We propose a deep learning model, massNet, that provides the desired qualities of scalability, nonlinearity and speed in MSI data analysis. This deep learning model was used, without prior preprocessing and peak picking, to classify MSI data from a mouse brain harboring a patient-derived tumor. The massNet architecture established automatically learning of predictive features, and automated methods were incorporated to identify peaks with potential for tumor delineation. The model's performance was assessed using cross-validation, and the results demonstrate higher accuracy and a substantial gain in speed compared to the established classical machine learning method, support vector machine. AVAILABILITY AND IMPLEMENTATION: https://github.com/wabdelmoula/massNet. The data underlying this article are available in the NIH Common Fund's National Metabolomics Data Repository (NMDR) Metabolomics Workbench under project id (PR001292) with http://dx.doi.org/10.21228/M8Q70T. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Aprendizado Profundo , Neoplasias , Animais , Camundongos , Espectrometria de Massas/métodos , Metabolômica/métodos , Aprendizado de Máquina , Neoplasias/diagnóstico por imagem
5.
Neuro Oncol ; 24(1): 64-77, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34383057

RESUMO

BACKGROUND: Response to targeted therapy varies between patients for largely unknown reasons. Here, we developed and applied an integrative platform using mass spectrometry imaging (MSI), phosphoproteomics, and multiplexed tissue imaging for mapping drug distribution, target engagement, and adaptive response to gain insights into heterogeneous response to therapy. METHODS: Patient-derived xenograft (PDX) lines of glioblastoma were treated with adavosertib, a Wee1 inhibitor, and tissue drug distribution was measured with MALDI-MSI. Phosphoproteomics was measured in the same tumors to identify biomarkers of drug target engagement and cellular adaptive response. Multiplexed tissue imaging was performed on sister sections to evaluate spatial co-localization of drug and cellular response. The integrated platform was then applied on clinical specimens from glioblastoma patients enrolled in the phase 1 clinical trial. RESULTS: PDX tumors exposed to different doses of adavosertib revealed intra- and inter-tumoral heterogeneity of drug distribution and integration of the heterogeneous drug distribution with phosphoproteomics and multiplexed tissue imaging revealed new markers of molecular response to adavosertib. Analysis of paired clinical specimens from patients enrolled in the phase 1 clinical trial informed the translational potential of the identified biomarkers in studying patient's response to adavosertib. CONCLUSIONS: The multimodal platform identified a signature of drug efficacy and patient-specific adaptive responses applicable to preclinical and clinical drug development. The information generated by the approach may inform mechanisms of success and failure in future early phase clinical trials, providing information for optimizing clinical trial design and guiding future application into clinical practice.


Assuntos
Glioblastoma , Preparações Farmacêuticas , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Humanos
6.
Sci Adv ; 7(46): eabk0734, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34767442

RESUMO

Proteins are the primary effectors of function in biology, and thus, complete knowledge of their structure and properties is fundamental to deciphering function in basic and translational research. The chemical diversity of proteins is expressed in their many proteoforms, which result from combinations of genetic polymorphisms, RNA splice variants, and posttranslational modifications. This knowledge is foundational for the biological complexes and networks that control biology yet remains largely unknown. We propose here an ambitious initiative to define the human proteome, that is, to generate a definitive reference set of the proteoforms produced from the genome. Several examples of the power and importance of proteoform-level knowledge in disease-based research are presented along with a call for improved technologies in a two-pronged strategy to the Human Proteoform Project.

7.
Nat Commun ; 12(1): 5544, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34545087

RESUMO

Mass spectrometry imaging (MSI) is an emerging technology that holds potential for improving, biomarker discovery, metabolomics research, pharmaceutical applications and clinical diagnosis. Despite many solutions being developed, the large data size and high dimensional nature of MSI, especially 3D datasets, still pose computational and memory complexities that hinder accurate identification of biologically relevant molecular patterns. Moreover, the subjectivity in the selection of parameters for conventional pre-processing approaches can lead to bias. Therefore, we assess if a probabilistic generative model based on a fully connected variational autoencoder can be used for unsupervised analysis and peak learning of MSI data to uncover hidden structures. The resulting msiPL method learns and visualizes the underlying non-linear spectral manifold, revealing biologically relevant clusters of tissue anatomy in a mouse kidney and tumor heterogeneity in human prostatectomy tissue, colorectal carcinoma, and glioblastoma mouse model, with identification of underlying m/z peaks. The method is applied for the analysis of MSI datasets ranging from 3.3 to 78.9 GB, without prior pre-processing and peak picking, and acquired using different mass spectrometers at different centers.


Assuntos
Imageamento Tridimensional , Redes Neurais de Computação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Algoritmos , Animais , Tecido Conjuntivo/diagnóstico por imagem , Tecido Conjuntivo/patologia , Aprendizado Profundo , Modelos Animais de Doenças , Humanos , Rim/diagnóstico por imagem , Metabolômica , Camundongos , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Dinâmica não Linear , Reprodutibilidade dos Testes , alfa-Defensinas/metabolismo
8.
Anal Chem ; 93(16): 6355-6362, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33844516

RESUMO

A major limitation of intact protein fragmentation is the lack of sequence coverage within proteins' interiors. We show that collisionally activated dissociation (CAD) produces extensive internal fragmentation within proteins' interiors that fill the existing gaps in sequence coverage, including disulfide loop regions that cannot be characterized using terminal fragments. A barrier to the adoption of internal fragments is the lack of methods for their generation and assignment. To provide these, we explore the effects of protein size, mass accuracy, internal fragment size, CAD activation energy, and data preprocessing upon the production and identification of internal fragments. We also identify and mitigate the major source of ambiguity in internal fragment identification, which we term "frameshift ambiguity." Such ambiguity results from sequences containing any "middle" portion surrounded by the same composition on both termini, which upon fragmentation can produce two internal fragments of identical mass, yet out of frame by one or more amino acids (e.g., TRAIT producing TRAI or RAIT). We show that such instances permit the a priori assignment of the middle sequence portion. This insight and our optimized methods permit the unambiguous assignment of greater than 97% of internal fragments using only the accurate mass. We show that any remaining ambiguity in internal fragment assignment can be removed by consideration of fragmentation propensities or by (pseudo)-MS3. Applying these methods resulted in a 10-fold and 43-fold expanded number of identified ions, and a concomitant 7- and 16-fold increase in fragmentation sites, respectively, for native and reduced forms of a disease-associated SOD1 variant.

9.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33653954

RESUMO

Ras dimerization is critical for Raf activation. Here we show that the Ras binding domain of Raf (Raf-RBD) induces robust Ras dimerization at low surface densities on supported lipid bilayers and, to a lesser extent, in solution as observed by size exclusion chromatography and confirmed by SAXS. Community network analysis based on molecular dynamics simulations shows robust allosteric connections linking the two Raf-RBD D113 residues located in the Galectin scaffold protein binding site of each Raf-RBD molecule and 85 Å apart on opposite ends of the dimer complex. Our results suggest that Raf-RBD binding and Ras dimerization are concerted events that lead to a high-affinity signaling complex at the membrane that we propose is an essential unit in the macromolecular assembly of higher order Ras/Raf/Galectin complexes important for signaling through the Ras/Raf/MEK/ERK pathway.


Assuntos
Simulação de Dinâmica Molecular , Proteínas Proto-Oncogênicas p21(ras)/química , Quinases raf/química , Galectinas/química , Galectinas/genética , Galectinas/metabolismo , Humanos , Domínios Proteicos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Quinases raf/genética , Quinases raf/metabolismo
10.
Bioconjug Chem ; 32(3): 584-594, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33606505

RESUMO

We recently reported that cyclic thiosulfinates are cysteine selective cross-linkers that avoid the "dead-end" modifications that contribute to other cross-linkers' toxicity. In this study, we generalize the chemistry of cyclic thiosulfinates to that of thiol selective cross-linking and apply them to the synthesis of hydrogels. Thiol-functionalized four-arm poly(ethylene glycol) and hyaluronic acid monomers were cross-linked with 1,2-dithiane-1-oxide to form disulfide cross-linked hydrogels within seconds. The synthesized hydrogel could be reduced with physiological concentrations of glutathione, which modulated hydrogel mechanical properties and degradation kinetics. Bovine serum albumin protein was successfully encapsulated in hydrogel, and diffusion-mediated release was demonstrated in vitro. Hep G2 cells grew in the presence of preformed hydrogel and during hydrogel synthesis, demonstrating acceptable cytotoxicity. We encapsulated cells within a hydrogel and demonstrated cell growth and recovery up to 10 days, with and without cell adhesion peptides. In summary, we report cyclic thiosulfinates as a novel class of cross-linkers for the facile synthesis of biodegradable hydrogels.


Assuntos
Reagentes de Ligações Cruzadas/química , Dissulfetos/química , Hidrogéis/síntese química , Compostos de Sulfidrila/química , Ácido Hialurônico/química , Reologia
11.
ACS Chem Biol ; 16(1): 106-115, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33315366

RESUMO

The cell membrane of brain endothelial cells is enriched in omega-3 phospholipid species. Numerous omega-3 phospholipid species were recently proposed to be important for maintaining the low rate of transcytosis and, thus, could be important for regulating one of the mechanisms of the blood brain barrier (BBB). However, the spatial distribution of these phospholipid species within the brain was previously unknown. Here, we combined advanced mass spectrometry imaging techniques to generate a map of these phospholipids in the brain at near single cell resolution. Furthermore, we explored the effects of omega-3 dietary deprivation on both docosahexaenoic acid (DHA)-containing phospholipids and the global brain phospholipid profile. We demonstrate the unique spatial distribution of individual DHA-containing phospholipids, which may be important for the regiospecific properties of the BBB. Finally, 24 diet discriminative phospholipids were identified and showed an increase in saturated phospholipid species and ceramide containing phospholipid species under omega-3 dietary deficiency.


Assuntos
Ácidos Graxos Ômega-3/metabolismo , Fosfolipídeos/farmacologia , Transcitose/efeitos dos fármacos , Animais , Barreira Hematoencefálica , Feminino , Masculino , Camundongos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
12.
J Am Soc Mass Spectrom ; 31(9): 1783-1802, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32812765

RESUMO

The Consortium for Top-Down Proteomics (www.topdownproteomics.org) launched the present study to assess the current state of top-down mass spectrometry (TD MS) and middle-down mass spectrometry (MD MS) for characterizing monoclonal antibody (mAb) primary structures, including their modifications. To meet the needs of the rapidly growing therapeutic antibody market, it is important to develop analytical strategies to characterize the heterogeneity of a therapeutic product's primary structure accurately and reproducibly. The major objective of the present study is to determine whether current TD/MD MS technologies and protocols can add value to the more commonly employed bottom-up (BU) approaches with regard to confirming protein integrity, sequencing variable domains, avoiding artifacts, and revealing modifications and their locations. We also aim to gather information on the common TD/MD MS methods and practices in the field. A panel of three mAbs was selected and centrally provided to 20 laboratories worldwide for the analysis: Sigma mAb standard (SiLuLite), NIST mAb standard, and the therapeutic mAb Herceptin (trastuzumab). Various MS instrument platforms and ion dissociation techniques were employed. The present study confirms that TD/MD MS tools are available in laboratories worldwide and provide complementary information to the BU approach that can be crucial for comprehensive mAb characterization. The current limitations, as well as possible solutions to overcome them, are also outlined. A primary limitation revealed by the results of the present study is that the expert knowledge in both experiment and data analysis is indispensable to practice TD/MD MS.


Assuntos
Anticorpos Monoclonais , Espectrometria de Massas/métodos , Proteômica/métodos , Animais , Anticorpos Monoclonais/análise , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Regiões Determinantes de Complementaridade/análise , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/genética , Humanos , Camundongos
13.
Sci Rep ; 10(1): 3715, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32111867

RESUMO

0.5-1% of ALS (Amyotrophic Lateral Sclerosis) and Parkinson's disease (PD) are associated with mutations in the angiogenin (ANG). These mutations are thought to cause disease through a loss of ANG function, but this hypothesis has not been evaluated statistically. In addition, the potential for ANG to promote disease has not been considered. With the goal of better defining the etiology of ANG-ALS, we assembled all clinical onset and disease duration data and determined if these were correlated with biochemical properties of ANG variants. Loss of ANG stability and ribonuclease activity were found to correlate with early ALS onset, confirming an aspect of the prevailing model of ANG-ALS. Conversely, loss of ANG stability and ribonuclease activity correlated with longer survival following diagnosis, which is inconsistent with the prevailing model. These results indicate that functional ANG appears to decrease the risk of developing ALS but exacerbate ALS once in progress. These findings are rationalized in terms of studies demonstrating that distinct mechanisms contribute to ALS onset and progression and propose that ANG replacement or stabilization would benefit pre-symptomatic ANG-ALS patients. However, this study challenges the prevailing hypothesis that augmenting ANG will benefit symptomatic ANG-ALS patients. Instead, our results suggest that silencing of ANG activity may be beneficial for symptomatic ALS patients. This study will serve as a call-to-arms for neurologists to consistently publish ALS and PD patient's clinical data-if all ANG-ALS patients' data were available our findings could be tested with considerable statistical power.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Mutação com Perda de Função , Ribonuclease Pancreático/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/mortalidade , Humanos , Pessoa de Meia-Idade , Estabilidade Proteica , Ribonuclease Pancreático/metabolismo , Sobrevida
14.
Mol Biol Cell ; 31(1): 7-17, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31746669

RESUMO

The unfolded protein response (UPR) senses defects in the endoplasmic reticulum (ER) and orchestrates a complex program of adaptive cellular remodeling. Increasing evidence suggests an important relationship between lipid homeostasis and the UPR. Defects in the ER membrane induce the UPR, and the UPR in turn controls the expression of some lipid metabolic genes. Among lipid species, the very-long-chain fatty acids (VLCFAs) are relatively rare and poorly understood. Here, we show that loss of the VLCFA-coenzyme A synthetase Fat1, which is essential for VLCFA utilization, results in ER stress with compensatory UPR induction. Comprehensive lipidomic analyses revealed a dramatic increase in membrane saturation in the fat1Δ mutant, likely accounting for UPR induction. In principle, this increased membrane saturation could reflect adaptive membrane remodeling or an adverse effect of VLCFA dysfunction. We provide evidence supporting the latter, as the fat1Δ mutant showed defects in the function of Ole1, the sole fatty acyl desaturase in yeast. These results indicate that VLCFAs play essential roles in protein quality control and membrane homeostasis and suggest an unexpected requirement for VLCFAs in Ole1 function.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Coenzima A Ligases/metabolismo , Retículo Endoplasmático/fisiologia , Proteínas de Transporte de Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Homeostase , Metabolismo dos Lipídeos/fisiologia , Lipídeos/fisiologia , Membranas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Resposta a Proteínas não Dobradas/genética
15.
Cancer Res ; 80(6): 1258-1267, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31767628

RESUMO

Glioblastoma (GBM) is increasingly recognized as a disease involving dysfunctional cellular metabolism. GBMs are known to be complex heterogeneous systems containing multiple distinct cell populations and are supported by an aberrant network of blood vessels. A better understanding of GBM metabolism, its variation with respect to the tumor microenvironment, and resulting regional changes in chemical composition is required. This may shed light on the observed heterogeneous drug distribution, which cannot be fully described by limited or uneven disruption of the blood-brain barrier. In this work, we used mass spectrometry imaging (MSI) to map metabolites and lipids in patient-derived xenograft models of GBM. A data analysis workflow revealed that distinctive spectral signatures were detected from different regions of the intracranial tumor model. A series of long-chain acylcarnitines were identified and detected with increased intensity at the tumor edge. A 3D MSI dataset demonstrated that these molecules were observed throughout the entire tumor/normal interface and were not confined to a single plane. mRNA sequencing demonstrated that hallmark genes related to fatty acid metabolism were highly expressed in samples with higher acylcarnitine content. These data suggest that cells in the core and the edge of the tumor undergo different fatty acid metabolism, resulting in different chemical environments within the tumor. This may influence drug distribution through changes in tissue drug affinity or transport and constitute an important consideration for therapeutic strategies in the treatment of GBM. SIGNIFICANCE: GBM tumors exhibit a metabolic gradient that should be taken into consideration when designing therapeutic strategies for treatment.See related commentary by Tan and Weljie, p. 1231.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Xenoenxertos , Humanos , Espectrometria de Massas , Microambiente Tumoral
17.
Nat Methods ; 16(7): 587-594, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31249407

RESUMO

One gene can give rise to many functionally distinct proteoforms, each of which has a characteristic molecular mass. Top-down mass spectrometry enables the analysis of intact proteins and proteoforms. Here members of the Consortium for Top-Down Proteomics provide a decision tree that guides researchers to robust protocols for mass analysis of intact proteins (antibodies, membrane proteins and others) from mixtures of varying complexity. We also present cross-platform analytical benchmarks using a protein standard sample, to allow users to gauge their proficiency.


Assuntos
Benchmarking , Espectrometria de Massas/métodos , Proteínas/química , Desnaturação Proteica , Processamento de Proteína Pós-Traducional , Proteômica
18.
Anal Chem ; 91(9): 6206-6216, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30932478

RESUMO

Multimodal integration between mass spectrometry imaging (MSI) and radiology-established modalities such as magnetic resonance imaging (MRI) would allow the investigations of key questions in complex biological systems such as the central nervous system. Such integration would provide complementary multiscale data to bridge the gap between molecular and anatomical phenotypes, potentially revealing new insights into molecular mechanisms underlying anatomical pathologies presented on MRI. Automatic coregistration between 3D MSI/MRI is a computationally challenging process due to dimensional complexity, MSI data sparsity, lack of direct spatial-correspondences, and nonlinear tissue deformation. Here, we present a new computational approach based on stochastic neighbor embedding to nonlinearly align 3D MSI to MRI data, identify and reconstruct biologically relevant molecular patterns in 3D, and fuse the MSI datacube to the MRI space. We demonstrate our method using multimodal high-spectral resolution matrix-assisted laser desorption ionization (MALDI) 9.4 T MSI and 7 T in vivo MRI data, acquired from a patient-derived, xenograft mouse brain model of glioblastoma following administration of the EGFR inhibitor drug of Erlotinib. Results show the distribution of some identified molecular ions of the EGFR inhibitor erlotinib, a phosphatidylcholine lipid, and cholesterol, which were reconstructed in 3D and mapped to the MRI space. The registration quality was evaluated on two normal mouse brains using the Dice coefficient for the regions of brainstem, hippocampus, and cortex. The method is generic and can therefore be applied to hyperspectral images from different mass spectrometers and integrated with other established in vivo imaging modalities such as computed tomography (CT) and positron emission tomography (PET).


Assuntos
Automação , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tomografia Computadorizada por Raios X
19.
Anal Chem ; 91(6): 3810-3817, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30839199

RESUMO

Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) provides a unique in situ chemical profile that can include drugs, nucleic acids, metabolites, lipids, and proteins. MSI of individual cells (of a known cell type) affords a unique insight into normal and disease-related processes and is a prerequisite for combining the results of MSI and other single-cell modalities (e.g. mass cytometry and next-generation sequencing). Technological barriers have prevented the high-throughput assignment of MSI spectra from solid tissue preparations to their cell type. These barriers include obtaining a suitable cell-identifying image (e.g. immunohistochemistry) and obtaining sufficiently accurate registration of the cell-identifying and MALDI-MS images. This study introduces a technique that overcame these barriers by assigning cell type directly from mass spectra. We hypothesized that, in MSI from mice with a defined fluorescent protein expression pattern, the fluorescent protein's molecular ion could be used to identify cell cohorts. A method was developed for the purification of enhanced yellow fluorescent protein (EYFP) from mice. To determine EYFP's molecular mass for MSI studies, we performed intact mass analysis and characterized the protein's primary structure and post-translational modifications through various techniques. MALDI-MSI methods were developed to enhance the detection of EYFP in situ, and by extraction of EYFP's molecular ion from MALDI-MS images, automated, whole-image assignment of cell cohorts was achieved. This method was validated using a well-characterized mouse line that expresses EYFP in motor and sensory neurons and should be applicable to hundreds of commercially available mice (and other animal) strains comprising a multitude of cell-specific fluorescent labels.


Assuntos
Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Imagem Molecular/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Animais , Camundongos , Peso Molecular , Neurônios/metabolismo
20.
Mol Cancer Res ; 17(5): 1155-1165, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30745465

RESUMO

Diagnosis of prostate cancer is based on histologic evaluation of tumor architecture using a system known as the "Gleason score." This diagnostic paradigm, while the standard of care, is time-consuming, shows intraobserver variability, and provides no information about the altered metabolic pathways, which result in altered tissue architecture. Characterization of the molecular composition of prostate cancer and how it changes with respect to the Gleason score (GS) could enable a more objective and faster diagnosis. It may also aid in our understanding of disease onset and progression. In this work, we present mass spectrometry imaging for identification and mapping of lipids and metabolites in prostate tissue from patients with known prostate cancer with GS from 6 to 9. A gradient of changes in the intensity of various lipids was observed, which correlated with increasing GS. Interestingly, these changes were identified in both regions of high tumor cell density, and in regions of tissue that appeared histologically benign, possibly suggestive of precancerous metabolomic changes. A total of 31 lipids, including several phosphatidylcholines, phosphatidic acids, phosphatidylserines, phosphatidylinositols, and cardiolipins were detected with higher intensity in GS (4+3) compared with GS (3+4), suggesting they may be markers of prostate cancer aggression. Results obtained through mass spectrometry imaging studies were subsequently correlated with a fast, ambient mass spectrometry method for potential use as a clinical tool to support image-guided prostate biopsy. IMPLICATIONS: In this study, we suggest that metabolomic differences between prostate cancers with different Gleason scores can be detected by mass spectrometry imaging.


Assuntos
Biomarcadores Tumorais/metabolismo , Metabolômica/métodos , Neoplasias da Próstata/patologia , Progressão da Doença , Humanos , Biópsia Guiada por Imagem , Lipidômica/métodos , Masculino , Espectrometria de Massas , Gradação de Tumores , Prostatectomia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...