Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 62(5): 1290-1295, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36821229

RESUMO

In this paper, we take advantage of the high refractive index property of silicon to design a practical and sensitive plasmonic sensor on a photonic integrated circuit (PIC) platform. It has been demonstrated that a label-free refractive index sensor with sensitivity up to 1124 nm/RIU can be obtained using a simple design of a silicon nano-ring with a concentric hexagonal plasmonic cavity. It has also been shown that, with optimum structural parameters, a quality factor (Q-factor) of 307 and a figure of merit (FOM) of 234R I U -1 can be achieved, which are approximately 8 times and 5 times higher than the proposed sensors counterparts, respectively. In addition, the resonance mode of the hexagonal cavity with Si nano-ring (HCS) sensor can be adjusted to operate in the C-band, which is a highly desirable wavelength range in terms of compatibility with devices in PIC technology.

2.
Light Sci Appl ; 10(1): 130, 2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34140461

RESUMO

Optical pulses are fundamentally defined by their temporal and spectral properties. The ability to control pulse properties allows practitioners to efficiently leverage them for advanced metrology, high speed optical communications and attosecond science. Here, we report 11× temporal compression of 5.8 ps pulses to 0.55 ps using a low power of 13.3 W. The result is accompanied by a significant increase in the pulse peak power by 9.4×. These results represent the strongest temporal compression demonstrated to date on a complementary metal-oxide-semiconductor (CMOS) chip. In addition, we report the first demonstration of on-chip spectral compression, 3.0× spectral compression of 480 fs pulses, importantly while preserving the pulse energy. The strong compression achieved at low powers harnesses advanced on-chip device design, and the strong nonlinear properties of backend-CMOS compatible ultra-silicon-rich nitride, which possesses absence of two-photon absorption and 500× larger nonlinear parameter than in stoichiometric silicon nitride waveguides. The demonstrated work introduces an important new paradigm for spectro-temporal compression of optical pulses toward turn-key, on-chip integrated systems for all-optical pulse control.

3.
Nano Lett ; 20(10): 7429-7437, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32942862

RESUMO

Wide field-of-view (FOV) optical functionality is crucial for implementation of advanced imaging and image projection devices. Conventionally, wide FOV operation is attained with complicated assembly of multiple optical elements known as "fisheye lenses". Here we present a novel metalens design capable of performing diffraction-limited focusing and imaging over an unprecedented near 180° angular FOV. The lens is monolithically integrated on a one-piece flat substrate and involves only a single layer of metasurface that corrects third-order Seidel aberrations including coma, astigmatism, and field curvature. The metalens further features a planar focal surface, which enables considerably simplified system architectures for applications in imaging and projection. We fabricated the metalens using Huygens meta-atoms operating at 5.2 µm wavelength and experimentally demonstrated aberration-free focusing and imaging over the entire FOV. The design concept is generic and can be readily adapted to different meta-atom geometries and wavelength ranges to meet diverse application demands.

4.
ACS Sens ; 5(7): 1996-2002, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32441524

RESUMO

Despite the recent emergence of microcavity resonators as label-free biological and chemical sensors, practical applications still require simple and robust methods to impart chemical selectivity and reduce the cost of fabrication. We introduce the use of hydrocarbon-in-fluorocarbon-in-water (HC/FC/W) double emulsions as a liquid top cladding that expands the versatility of optical resonators as chemical sensors. The all-liquid complex emulsions are tunable droplets that undergo dynamic and reversible morphological transformations in response to a change in the chemical environment (e.g., exposure to targeted analytes). This chemical-morphological coupling drastically modifies the effective refractive index, allowing the complex emulsions to act as a chemical transducer and signal amplifier. We detect this large change in the refractive index by tracking the shift of the enveloped resonant spectrum of a silicon nitride (Si3N4) racetrack resonator-based sensor, which correlates well with a change in the morphology of the complex droplets. This combination of soft materials (dynamic complex emulsions) and hard materials (on-chip resonators) provides a unique platform for liquid-phase, real-time, and continuous detection of chemicals and biomolecules for miniaturized and remote, environmental, medical, and wearable sensing applications.


Assuntos
Óptica e Fotônica , Fótons , Emulsões , Refratometria , Transdutores
5.
Opt Lett ; 42(17): 3454-3457, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957061

RESUMO

We report that propagation loss of optical waveguides based on a silicon-on-insulator (SOI) material platform can be greatly reduced. Our simulations show that the loss, including SiO2 absorption and substrate leakage, but no scattering loss, is 0.024 and 0.53 dB/cm in the deep mid-infrared at 4.8 and 7.1 µm wavelengths, where the material absorption in SiO2 is 100 and 1000 dB/cm, respectively. The loss becomes negligible, compared to scattering loss in Si waveguides. This is enabled by using the TE10 mode in a pedestal waveguide. We also show that the TE10 mode can be excited in the proposed waveguide by the fundamental mode with a coupling efficiency of >94%. Low propagation loss, high coupling efficiency, and fabrication-friendly design would make it promising for practical use of SOI devices in the deep mid-infrared.

6.
Opt Express ; 25(14): 16116-16122, 2017 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-28789119

RESUMO

Ge-on-Si is an attractive material platform for mid-IR broadband sources on a chip because of its wide transparency window, high Kerr nonlinearity and CMOS compatibility. We present a low-loss Ge-on-Si waveguide with flat and low dispersion from 3 to 11 µm, which enables a coherent supercontinuum from 2 to 12 µm, generated using a sub-ps pulsed pump. We show that 700-fs pump pulses with a low peak power of 400 W are needed to generate such a wide supercontinuum, and the waveguide length is around 5.35 mm.

7.
Opt Lett ; 42(3): 587-590, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28146534

RESUMO

Understanding radiation damage is of significant importance for devices operating in radiation-harsh environments. In this Letter, we present a systematic study on gamma radiation effects in amorphous silicon and silicon nitride guided wave devices. It is found that gamma radiation increases the waveguide modal effective indices by as much as 4×10-3 in amorphous silicon and 5×10-4 in silicon nitride at 10 Mrad dose. This Letter further reveals that surface oxidation and radiation-induced densification account for the observed index change.

8.
Sci Rep ; 6: 39234, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-28000725

RESUMO

GeSbS ridge waveguides have recently been demonstrated as a promising mid - infrared platform for integrated waveguide - based chemical sensing and photodetection. To date, their nonlinear optical properties remain relatively unexplored. In this paper, we characterize the nonlinear optical properties of GeSbS glasses, and show negligible nonlinear losses at 1.55 µm. Using self - phase modulation experiments, we characterize a waveguide nonlinear parameter of 7 W-1/m and nonlinear refractive index of 3.71 × 10-18 m2/W. GeSbS waveguides are used to generate supercontinuum from 1280 nm to 2120 nm at the -30 dB level. The spectrum expands along the red shifted side of the spectrum faster than on the blue shifted side, facilitated by cascaded stimulated Raman scattering arising from the large Raman gain of chalcogenides. Fourier transform infrared spectroscopic measurements show that these glasses are optically transparent up to 25 µm, making them useful for short - wave to long - wave infrared applications in both linear and nonlinear optics.

9.
Opt Lett ; 41(13): 3053-6, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27367099

RESUMO

To support the use of integrated photonics in harsh environments, such as outer space, the hardness threshold to high-energy radiation must be established. Here, we investigate the effects of gamma (γ) rays, with energy in the MeV-range, on silicon photonic waveguides. By irradiation of high-quality factor amorphous silicon core resonators, we measure the impact of γ rays on the materials incorporated in our waveguide system, namely amorphous silicon, silicon dioxide, and polymer. While we show the robustness of amorphous silicon and silicon dioxide up to an absorbed dose of 15 Mrad, more than 100× higher than previous reports on crystalline silicon, polymer materials exhibit changes with doses as low as 1 Mrad.

10.
Opt Lett ; 39(21): 6126-9, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25361295

RESUMO

We analytically and numerically investigate the nonlinear conversion efficiency in ring microresonator-based mode-locked frequency combs under different dispersion conditions. Efficiency is defined as the ratio of the average round trip energy values for the generated pulse(s) to the input pump light. We find that the efficiency degrades with growth of the comb spectral width and is inversely proportional to the number of comb lines. It depends on the cold-cavity properties of a microresonator only and can be improved by increasing the coupling coefficient. Also, it can be increased in the multi-soliton state.

11.
Sci Technol Adv Mater ; 15(1): 014603, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27877641

RESUMO

In this article, we review our recent work on mid-infrared (mid-IR) photonic materials and devices fabricated on silicon for on-chip sensing applications. Pedestal waveguides based on silicon are demonstrated as broadband mid-IR sensors. Our low-loss mid-IR directional couplers demonstrated in SiN x waveguides are useful in differential sensing applications. Photonic crystal cavities and microdisk resonators based on chalcogenide glasses for high sensitivity are also demonstrated as effective mid-IR sensors. Polymer-based functionalization layers, to enhance the sensitivity and selectivity of our sensor devices, are also presented. We discuss the design of mid-IR chalcogenide waveguides integrated with polycrystalline PbTe detectors on a monolithic silicon platform for optical sensing, wherein the use of a low-index spacer layer enables the evanescent coupling of mid-IR light from the waveguides to the detector. Finally, we show the successful fabrication processing of our first prototype mid-IR waveguide-integrated detectors.

12.
Opt Lett ; 38(23): 5122-5, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24281525

RESUMO

We show that octave-spanning Kerr frequency combs with improved spectral flatness of comb lines can be generated in dispersion-flattened microring resonators. The resonator is formed by a strip/slot hybrid waveguide, exhibiting a flat and low anomalous dispersion between two zero-dispersion wavelengths that are separated by one octave from near-infrared to mid-infrared. Such flattened dispersion profiles allow for the generation of mode-locked frequency combs, using relatively low pump power to obtain two-cycle cavity solitons on a chip, associated with the octave-spanning comb bandwidth. The wavelength dependence of the optical loss and of the coupling coefficient and thus wavelength dependent Q-factor are also considered.

14.
Opt Express ; 18(12): 12890-6, 2010 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-20588417

RESUMO

In this paper, we demonstrate high optical quantum efficiency (90%) resonant-cavity-enhanced mid-infrared photodetectors fabricated monolithically on a silicon platform. High quality photoconductive polycrystalline PbTe film is thermally evaporated, oxygen-sensitized at room temperature and acts as the infrared absorber. The cavity-enhanced detector operates in the critical coupling regime and shows a peak responsivity of 100 V/W at the resonant wavelength of 3.5 microm, 13.4 times higher compared to blanket PbTe film of the same thickness. Detectivity as high as 0.72 x 10(9) cmHz(1/2)W(-1) has been measured, comparable with commercial polycrystalline mid-infrared photodetectors. As low temperature processing (< 160 degrees C) is implemented in the entire fabrication process, our detector is promising for monolithic integration with Si readout integrated circuits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...