Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Differ ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745079

RESUMO

The p53 tumor suppressor, encoded by the TP53 gene, serves as a major barrier against malignant transformation. Patients with Li-Fraumeni syndrome (LFS) inherit a mutated TP53 allele from one parent and a wild-type TP53 allele from the other. Subsequently, the wild-type allele is lost and only the mutant TP53 allele remains. This process, which is termed loss of heterozygosity (LOH), results in only mutant p53 protein expression. We used primary dermal fibroblasts from LFS patients carrying the hotspot p53 gain-of-function pathogenic variant, R248Q to study the LOH process and characterize alterations in various pathways before and after LOH. We previously described the derivation of mutant p53 reactivating peptides, designated pCAPs (p53 Conformation Activating Peptides). In this study, we tested the effect of lead peptide pCAP-250 on LOH and on its associated cellular changes. We report that treatment of LFS fibroblasts with pCAP-250 prevents the accumulation of mutant p53 protein, inhibits LOH, and alleviates its cellular consequences. Furthermore, prolonged treatment with pCAP-250 significantly reduces DNA damage and restores long-term genomic stability. pCAPs may thus be contemplated as a potential preventive treatment to prevent or delay early onset cancer in carriers of mutant p53.

2.
Nat Commun ; 14(1): 77, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604421

RESUMO

Li-Fraumeni syndrome (LFS) is a hereditary cancer predisposition syndrome associated with germline TP53 pathogenic variants. Here, we perform whole-genome sequence (WGS) analysis of tumors from 22 patients with TP53 germline pathogenic variants. We observe somatic mutations affecting Wnt, PI3K/AKT signaling, epigenetic modifiers and homologous recombination genes as well as mutational signatures associated with prior chemotherapy. We identify near-ubiquitous early loss of heterozygosity of TP53, with gain of the mutant allele. This occurs earlier in these tumors compared to tumors with somatic TP53 mutations, suggesting the timing of this mark may distinguish germline from somatic TP53 mutations. Phylogenetic trees of tumor evolution, reconstructed from bulk and multi-region WGS, reveal that LFS tumors exhibit comparatively limited heterogeneity. Overall, our study delineates early copy number gains of mutant TP53 as a characteristic mutational process in LFS tumorigenesis, likely arising years prior to tumor diagnosis.


Assuntos
Síndrome de Li-Fraumeni , Síndromes Neoplásicas Hereditárias , Humanos , Proteína Supressora de Tumor p53/genética , Predisposição Genética para Doença , Variações do Número de Cópias de DNA/genética , Fosfatidilinositol 3-Quinases/genética , Filogenia , Síndrome de Li-Fraumeni/diagnóstico , Síndrome de Li-Fraumeni/genética , Mutação em Linhagem Germinativa/genética , Mutação
3.
Gynecol Minim Invasive Ther ; 11(1): 57-60, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310112

RESUMO

Rheumatic heart disease (RHD) is one of the most common cardiac conditions seen in India with mitral stenosis as the most prevalent cause affecting females more than males. With the increasing number of patients undergoing mitral valve replacement (MVR) and mandatory use of anticoagulants post-MVR, the patients presenting with drug-induced coagulopathy have increased. One of the rare complications of coagulopathy-related hemorrhage may be associated with a gynecological cause with maximum risk in women of reproductive age group. This chance of hemorrhage has increased due to various events that occur in reproductive organs, namely, ovulation, menstruation, trauma due to sexual intercourse, or pregnancy-related bleeding. Such bleeding is evident as external vaginal bleeding or hemoperitoneum. Hereby, we present a rare case of a 30-year-old woman, on anticoagulant therapy for MVR who presented with congestive cardiac failure associated with massive hemoperitoneum. On ultrasound-guided paracentesis, the cause of mild-to-moderate ascites was normal ovulatory bleed evident by the bleeding from the corpus luteal cyst.

4.
J Cell Sci ; 134(15)2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34369561

RESUMO

Meta-analysis of transcripts in colon adenocarcinoma patient tissues led to the identification of a DNA damage responsive miR signature called DNA damage sensitive miRs (DDSMs). DDSMs were experimentally validated in the cancerous colon tissues obtained from an independent cohort of colon cancer patients and in multiple cellular systems with high levels of endogenous DNA damage. All the tested DDSMs were transcriptionally upregulated by a common intestine-specific transcription factor, CDX2. Reciprocally, DDSMs were repressed via the recruitment of HDAC1/2-containing complexes onto the CDX2 promoter. These miRs downregulated multiple key targets in the DNA damage response (DDR) pathway, namely BRCA1, ATM, Chk1 (also known as CHEK1) and RNF8. CDX2 directly regulated the DDSMs, which led to increased tumor volume and metastasis in multiple preclinical models. In colon cancer patient tissues, the DDSMs negatively correlated with BRCA1 levels, were associated with decreased probability of survival and thereby could be used as a prognostic biomarker. This article has an associated First Person interview with the first author of the paper.


Assuntos
Adenocarcinoma , Neoplasias do Colo , MicroRNAs , Fator de Transcrição CDX2/genética , Neoplasias do Colo/genética , Dano ao DNA/genética , Proteínas de Ligação a DNA/genética , Humanos , MicroRNAs/genética , Fatores de Transcrição , Ubiquitina-Proteína Ligases
5.
PLoS Biol ; 19(3): e3001139, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33657094

RESUMO

Mutations in mitochondrial replicative polymerase PolγA lead to progressive external ophthalmoplegia (PEO). While PolγA is the known central player in mitochondrial DNA (mtDNA) replication, it is unknown whether a regulatory process exists on the mitochondrial outer membrane which controlled its entry into the mitochondria. We now demonstrate that PolγA is ubiquitylated by mitochondrial E3 ligase, MITOL (or MARCH5, RNF153). Ubiquitylation in wild-type (WT) PolγA occurs at Lysine 1060 residue via K6 linkage. Ubiquitylation of PolγA negatively regulates its binding to Tom20 and thereby its mitochondrial entry. While screening different PEO patients for mitochondrial entry, we found that a subset of the PolγA mutants is hyperubiquitylated by MITOL and interact less with Tom20. These PolγA variants cannot enter into mitochondria, instead becomes enriched in the insoluble fraction and undergo enhanced degradation. Hence, mtDNA replication, as observed via BrdU incorporation into the mtDNA, was compromised in these PEO mutants. However, by manipulating their ubiquitylation status by 2 independent techniques, these PEO mutants were reactivated, which allowed the incorporation of BrdU into mtDNA. Thus, regulated entry of non-ubiquitylated PolγA may have beneficial consequences for certain PEO patients.


Assuntos
DNA Polimerase gama/metabolismo , Proteínas de Membrana/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , DNA Polimerase gama/fisiologia , Replicação do DNA , DNA Mitocondrial/genética , Células HEK293 , Humanos , Proteínas de Membrana/fisiologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Mutação , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitinação
6.
Nat Commun ; 9(1): 1016, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29523790

RESUMO

Mutations in BLM in Bloom Syndrome patients predispose them to multiple types of cancers. Here we report that BLM is recruited in a biphasic manner to annotated DSBs. BLM recruitment is dependent on the presence of NBS1, MRE11 and ATM. While ATM activity is essential for BLM recruitment in early phase, it is dispensable in late phase when MRE11 exonuclease activity and RNF8-mediated ubiquitylation of BLM are the key determinants. Interaction between polyubiquitylated BLM and NBS1 is essential for the helicase to be retained at the DSBs. The helicase activity of BLM is required for the recruitment of HR and c-NHEJ factors onto the chromatin in S- and G1-phase, respectively. During the repair phase, BLM inhibits HR in S-phase and c-NHEJ in G1-phase. Consequently, inhibition of helicase activity of BLM enhances the rate of DNA alterations. Thus BLM utilizes its pro- and anti-repair functions to maintain genome stability.


Assuntos
Proteínas de Transporte/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/genética , Recombinação Homóloga/genética , Proteínas Nucleares/metabolismo , RecQ Helicases/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Síndrome de Bloom/genética , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica/genética , Células HEK293 , Humanos , Proteína Homóloga a MRE11/metabolismo , Rad51 Recombinase/metabolismo , RecQ Helicases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...