Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Math Phys Eng Sci ; 475(2221): 20180076, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30760948

RESUMO

Mouse models provide unique opportunities to study vascular disease, but they demand increased experimental and computational resolution. We describe a workflow for combining in vivo and in vitro biomechanical data to build mouse-specific computational models of the central vasculature including regional variations in biaxial wall stiffness, thickness and perivascular support. These fluid-solid interaction models are informed by micro-computed tomography imaging and in vivo ultrasound and pressure measurements, and include mouse-specific inflow and outflow boundary conditions. Hence, the model can capture three-dimensional unsteady flows and pulse wave characteristics. The utility of this experimental-computational approach is illustrated by comparing central artery biomechanics in adult wild-type and fibulin-5 deficient mice, a model of early vascular ageing. Findings are also examined as a function of sex. Computational results compare well with measurements and data available in the literature and suggest that pulse wave velocity, a spatially integrated measure of arterial stiffness, does not reflect well the presence of regional differences in stiffening, particularly those manifested in male versus female mice. Modelling results are also useful for comparing quantities that are difficult to measure or infer experimentally, including local pulse pressures at the renal arteries and characteristics of the peripheral vascular bed that may differ with disease.

2.
Front Pediatr ; 5: 78, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28491863

RESUMO

For babies born with hypoplastic left heart syndrome, several open-heart surgeries are required. During Stage I, a Norwood procedure is performed to construct an appropriate circulation to both the systemic and the pulmonary arteries. The pulmonary arteries receive flow from the systemic circulation, often using a Blalock-Taussig (BT) shunt between the innominate artery and the right pulmonary artery. This procedure causes significantly disturbed flow in the pulmonary arteries. In this study, we use computational hemodynamic simulations to demonstrate its capacity for examining the properties of the flow through and near the BT shunt. Initially, we construct a computational model which produces blood flow and pressure measurements matching the clinical magnetic resonance imaging (MRI) and catheterization data. Achieving this required us to determine the level of BT shunt occlusion; because the occlusion is below the MRI resolution, this information is difficult to recover without the aid of computational simulations. We determined that the shunt had undergone an effective diameter reduction of 22% since the time of surgery. Using the resulting geometric model, we show that we can computationally reproduce the clinical data. We, then, replace the BT shunt with a hypothetical alternative shunt design with a flare at the distal end. Investigation of the impact of the shunt design reveals that the flare can increase pulmonary pressure by as much as 7% and flow by as much as 9% in the main pulmonary branches, which may be beneficial to the pulmonary circulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA