Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Sci ; 13(3)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36979212

RESUMO

Traumatic brain injury (TBI) is a major source of death and disability worldwide as a result of motor vehicle accidents, falls, attacks and bomb explosions. Currently, there are no FDA-approved drugs to treat TBI patients predominantly because of a lack of appropriate methods to deliver drugs to the brain for therapeutic effect. Existing clinical and pre-clinical studies have shown that minocycline's neuroprotective effects either through high plasma protein binding or an increased dosage requirement have resulted in neurotoxicity. In this study, we focus on the formulation, characterization, in vivo biodistribution, behavioral improvements, neuroprotective effect and toxicity of transferrin receptor-targeted (tf) conjugated minocycline loaded albumin nanoparticles in a blast-induced TBI model. A novel tf conjugated minocycline encapsulated albumin nanoparticle was developed, characterized and quantified using a validated HPLC method as well as other various analytical methods. The results of the nanoformulation showed small, narrow hydrodynamic size distributions, with high entrapment, loading efficiencies and sustained release profiles. Furthermore, the nanoparticle administered at minimal doses in a rat model of blast TBI was able to cross the blood-brain barrier, enhanced nanoparticle accumulation in the brain, improved behavioral outcomes, neuroprotection, and reduced toxicity compared to free minocycline. Hence, tf conjugated minocycline loaded nanoparticle elicits a neuroprotective effect and can thus offer a potential therapeutic effect.

2.
Alcohol ; 109: 1-12, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36690222

RESUMO

Hemorrhage is a major component of traumatic brain injury (TBI). Red blood cells, accumulated at the hemorrhagic site, undergo hemolysis upon energy depletion and release free iron into the central nervous system. This iron must be managed to prevent iron neurotoxicity and ferroptosis. As prior alcohol consumption is often associated with TBI, we examined iron regulation in a rat model of chronic alcohol feeding subjected to fluid percussion-induced TBI. We found that alcohol consumption prior to TBI altered the expression profiles of the lipocalin 2/heme oxygenase 1/ferritin iron management system. Notably, unlike TBI alone, TBI following chronic alcohol consumption sustained the expression of all three regulatory proteins for 1, 3, and 7 days post-injury. In addition, alcohol significantly affected TBI-induced expression of ferritin light chain at 3 days post-injury. We also found that alcohol exacerbated TBI-induced activation of microglia at 7 days post-injury. Finally, we propose that microglia may also play a role in iron management through red blood cell clearance.


Assuntos
Lesões Encefálicas Traumáticas , Ferro , Ratos , Animais , Hemólise , Ratos Sprague-Dawley , Lesões Encefálicas Traumáticas/metabolismo , Etanol/farmacologia , Consumo de Bebidas Alcoólicas
3.
Cell Rep ; 39(13): 111018, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35767959

RESUMO

Disruption of circadian glucocorticoid oscillations in Cushing's disease and chronic stress results in obesity and adipocyte hypertrophy, which is believed to be a main source of the harmful effects of obesity. Here, we recapitulate stress due to jet lag or work-life imbalances by flattening glucocorticoid oscillations in mice. Within 3 days, mice achieve a metabolic state with persistently high insulin, but surprisingly low glucose and fatty acids in the bloodstream, that precedes a more than 2-fold increase in brown and white adipose tissue mass within 3 weeks. Transcriptomic and Cd36-knockout mouse analyses show that hyperinsulinemia-mediated de novo fatty acid synthesis and Cd36-mediated fatty acid uptake drive fat mass increases. Intriguingly, this mechanism by which glucocorticoid flattening causes acute hyperinsulinemia and adipocyte hypertrophy is unexpectedly beneficial in preventing high levels of circulating fatty acids and glucose for weeks, thus serving as a protective response to preserve metabolic health during chronic stress.


Assuntos
Glucocorticoides , Hiperinsulinismo , Adipócitos/metabolismo , Animais , Ácidos Graxos/metabolismo , Glucocorticoides/farmacologia , Glucose/metabolismo , Hiperinsulinismo/metabolismo , Hipertrofia/metabolismo , Camundongos , Obesidade/metabolismo
4.
J Neuroimmunol ; 368: 577869, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35576691

RESUMO

The trans-activator of transcription (TAT) is a human immunodeficiency virus (HIV-1) regulatory protein that is actively sloughed by infected cells. Once released, TAT can injure bystander cells and bring about their dysfunction. In the presence of ethanol, TAT-induced toxicity potentiates and, in so doing, exacerbates inflammation. One key aspect of neuroinflammation involves the infiltration of peripheral macrophage to the central nervous system. Here, we use an interactive neuroimmune cell coculture of brain endothelial, astrocyte, neuron, and macrophage cells to model the blood-brain barrier and evaluate macrophage migration upon challenge with ethanol and TAT concentrations. We have limited this study to examine TAT concentrations found in people living with HIV-1 with (5 ng/mL) or without (25 ng/mL) viral suppression and ethanol doses below the legal driving limit (10 mM). In so doing, we study the effects of casual drinking on people living with HIV-1 but experiencing the best possible clinical outcome. We found that TAT alone increases macrophage migration between 0.5 and 4 h. while ethanol alone increases migration in a delayed manner (occurring at 48 h.). Ethanol-induced NO production by endothelial cells and TAT's chemoattractant properties may explain this dichotomy in migration pattern. Combined low dose ethanol significantly increased migration under both 5 ng/mL and 25 ng/mL TAT injuries across all timepoints. Our findings suggest that co-presence of ethanol and TAT may be the combination of an initial TAT effect followed by subsequent ethanol treatment. We also examined the structural and behavioral changes of neurons treated with TAT and ethanol to understand their contribution to neurotoxicity. The lowest concentration of TAT still induced neurotoxicity while alcohol potentiated neuronal death, even at low doses.


Assuntos
HIV-1 , Produtos do Gene tat do Vírus da Imunodeficiência Humana , Células Endoteliais , Etanol , Humanos , Macrófagos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/farmacologia
5.
Alcohol ; 94: 25-41, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33864851

RESUMO

Alcohol use and HIV-1 infection have a pervasive impact on brain function, which extends to the requirement, distribution, and utilization of energy within the central nervous system. This effect on neuroenergetics may explain, in part, the exacerbation of HIV-1 disease under the influence of alcohol, particularly the persistence of HIV-associated neurological complications. The objective of this review article is to highlight the possible mechanisms of HIV/AIDS progression in alcohol users from the perspective of oxidative stress, neuroinflammation, and interruption of energy metabolism. These include the hallmark of sustained immune cell activation and high metabolic energy demand by HIV-1-infected cells in the central nervous system, with at-risk alcohol use. Here, we discussed the point that the increase in energy supply requirement by HIV-1-infected neuroimmune cells as well as the deterrence of nutrient uptake across the blood-brain barrier significantly depletes the energy source and neuro-environment homeostasis in the CNS. We also described the mechanistic idea that comorbidity of HIV-1 infection and alcohol use can cause a metabolic shift and redistribution of energy usage toward HIV-1-infected neuroimmune cells, as shown in neuropathological evidence. Under such an imbalanced neuro-environment, meaningless energy waste is expected in infected cells, along with unnecessary malnutrition in non-infected neuronal cells, which is likely to accelerate HIV neuro-infection progression in alcohol use. Thus, it will be important to consider the factor of nutrients/energy imbalance in formulating treatment strategies to help impede the progression of HIV-1 disease and associated neurological disorders in alcohol use.


Assuntos
Infecções por HIV , Consumo de Bebidas Alcoólicas , Sistema Nervoso Central , Humanos , Inflamação , Estresse Oxidativo
6.
Chem Eng J ; 4082021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37842134

RESUMO

Traumatic brain injury (TBI) is associated with poor intrinsic healing responses and long-term cognitive decline. A major pathological outcome of TBI is acute glutamate-mediated excitotoxicity (GME) experienced by neurons. Short peptides based on the neuroprotective extracellular glycoprotein ependymin have shown the ability to slow down the effect of GME - however, such short peptides tend to diffuse away from target sites after in vivo delivery. We have designed a self-assembling peptide containing an ependymin mimic that can form nanofibrous matrices. The peptide was evaluated in situ to assess neuroprotective utility after an acute fluidpercussion injury. This biomimetic matrix can conform to the intracranial damaged site after delivery, due its shear-responsive rheological properties. We demonstrated the potential efficacy of the peptide for supporting neuronal survival in vitro and in vivo. Our study demonstrates the potential of these implantable acellular hydrogels for managing the acute (up to 7 days) pathophysiological sequelae after traumatic brain injury. Further work is needed to evaluate less invasive administrative routes and long-term functional and behavioral improvements after injury.

7.
Alcohol ; 86: 65-74, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32224220

RESUMO

Engagement of programmed death-1 (PD-1) receptor by its ligands (PD-L1/PD-L2) in activated immune cells is known to be involved in inflammatory neurological disease via a co-inhibitory signal pathway. Interaction of PD-1/PD-L1 is believed to occur only in activated neuroimmune cells because there are undetectable levels of PD-1/PD-L1 in normal physiological conditions. Here, we evaluated whether activation of neuroimmune cells such as human macrophage, brain endothelial cells (hBECs), astrocytes, microglia, and neurons by non-toxic concentrations of ethanol (EtOH) exposure can alter PD-1/PD-L1 expression. Thus, the present study is limited to the screening of PD-1/PD-L1 alterations in neuroimmune cells following ethanol exposure. We found that exposure of human macrophage or microglia to EtOH in primary culture immediately increased the levels of PD-L1 and gradually up-regulated PD-1 levels (beginning at 1-2 h). Similarly, ethanol exposure was able to induce PD-1/PD-L1 levels in hBECs and neuronal culture in a delayed process (occurring at 24 h). Astrocyte culture was the only cell type that showed endogenous levels of PD-1/PD-L1 that was decreased by EtOH exposure time-dependently. We concluded that ethanol (alcohol) mediated the induction of PD-1/PD-L1 differentially in neuroimmune cells. Taken together, our findings suggest that up-regulation of PD-1/PD-L1 by chronic alcohol use may dampen the innate immune response of neuroimmune cells, thereby contributing to neuroinflammation and neurodegeneration.


Assuntos
Etanol/farmacologia , Neurônios/metabolismo , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Encéfalo/metabolismo , Citocinas/metabolismo , Células Endoteliais/metabolismo , Humanos , Microglia/metabolismo , Transdução de Sinais , Regulação para Cima
8.
Bioact Mater ; 5(1): 124-132, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32128463

RESUMO

Traumatic brain injury (TBI) impacts over 3.17 million Americans. Management of hemorrhage and coagulation caused by vascular disruption after TBI is critical for the recovery of patients. Cerebrovascular pathologies play an important role in the underlying mechanisms of TBI. The objective of this study is to evaluate a novel regenerative medicine for the injured tissue after brain injury. We utilized a recently described synthetic growth factor with angiogenic potential to facilitate vascular growth in situ at the injury site. Previous work has shown how this injectable self-assembling peptide-based hydrogel (SAPH) creates a regenerative microenvironment for neovascularization at the injury site. Supramolecular assembly allows for thixotropy; the injectable drug delivery system provides sustained in vivo efficacy. In this study, a moderate blunt injury model was used to cause physical vascular damage and hemorrhage. The angiogenic SAPH was then applied directly on the injured rat brain. At day 7 post-TBI, significantly more blood vessels were observed than the sham and injury control group, as well as activation of VEGF-receptor 2, demonstrating the robust angiogenic response elicited by the angiogenic SAPH. Vascular markers von-Willebrand factor (vWF) and α-smooth muscle actin (α-SMA) showed a concomitant increase with blood vessel density in response to the angiogenic SAPH. Moreover, blood brain barrier integrity and blood coagulation were also examined as the parameters to indicate wound recovery post TBI. Neuronal rescue examination by NeuN and myelin basic protein staining showed that the angiogenic SAPH may provide and neuroprotective benefit in the long-term recovery.

9.
Artigo em Inglês | MEDLINE | ID: mdl-31523362

RESUMO

Although the combination of highly active antiretroviral therapy (cART) can remarkably control human immunodeficiency virus type-1 (HIV-1) replication, it fails to cure HIV/AIDS disease. It is attributed to the incapability of cART to eliminate persistent HIV-1 contained in latent reservoirs in the central nervous system (CNS) and other tissue organs. Thus, withdrawal of cART causes rebound viral replication and resurgent of HIV/AIDS. The lack of success on non-ART approaches for elimination of HIV-1 include the targeted molecules not reaching the CNS, not adjusting well with drug-resistant mutants, or unable to eliminate all components of viral life cycle. Here, we show that our newly discovered Drug-S can effectively inhibit HIV-1 infection and persistence at the low concentration without causing any toxicity to neuroimmune cells. Our results suggest that Drug-S may have a direct effect on viral structure, prevent rebounding of HIV-1 infection, and arrest progression into acquired immunodeficiency syndrome. We also observed that Drug-S is capable of crossing the blood-brain barrier, suggesting a potential antiretroviral drug for elimination of CNS viral reservoirs and self-renewal of residual HIV-1. These results outlined the possible mechanism(s) of action of Drug-S as a novel antiretroviral drug for elimination of HIV-1 replication by interfering the virion structure.

10.
J Ovarian Res ; 9: 20, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-27036110

RESUMO

BACKGROUND: Ovarian cancer (OVC) is the deadliest of all gynecologic cancers, primarily as a consequence of asymptomatic progression. The complex nature of OVC creates challenges for early detection, and there is a lack of specific and sensitive biomarkers suitable for screening and detecting early stage OVC. METHODS: Potential OVC biomarkers were identified by bioinformatic analysis. Candidates were further screened for differential expression in a library of OVC cell lines. OVC-specific overexpression of a candidate gene, PRSS8, which encodes prostasin, was confirmed against 18 major human cancer types from 390 cancer samples by qRT-PCR. PRSS8 expression profiles stratified by OVC tumor stage-, grade- and subtype were generated using cDNA samples from 159 OVC samples. Cell-specific expression and localization of prostasin was determined by immunohistological tissue array analysis of more than 500 normal, benign, and cancerous ovarian tissues. The presence of prostasin in normal, benign, and OVC serum samples was also determined. RESULTS: Gene expression analysis indicated that PRSS8 was expressed in OVC at levels more than 100 fold greater than found in normal or benign ovarian lesions. This overexpression signature was found in early stages of OVC and was maintained in higher stages and grades of OVC. The PRSS8 overexpression signature was specific for OVC and urinary bladder cancer among 18 human cancer types. The majority of ovarian cell lines overexpressed PRSS8. In situ hybridization and histopathology studies of OVC tissues indicated that overexpression of prostasin was largely localized to tumor epithelium and was absent in neighboring stroma. Significantly higher levels of prostasin were found in early stage OVC serum samples compared to benign ovarian and normal donor samples. CONCLUSIONS: The abundant amounts of secreted prostasin found in sera of early stage OVC can potentially be used as a minimally invasive screening biomarker for early stage OVC. Overexpression of PRSS8 mRNA and high levels of prostasin in multiple subtypes of early stage ovarian tumors may provide clinical biomarkers for early detection of OVC, which can potentially be used with CA125 and HE4.


Assuntos
Biomarcadores Tumorais/sangue , Neoplasias Ovarianas/enzimologia , Serina Endopeptidases/sangue , Biomarcadores Tumorais/genética , Estudos de Casos e Controles , Linhagem Celular Tumoral , Detecção Precoce de Câncer , Feminino , Expressão Gênica , Humanos , Neoplasias Ovarianas/sangue , Neoplasias Ovarianas/diagnóstico , Serina Endopeptidases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...