Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(32): 12965-12975, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37531196

RESUMO

Stereoactive electron lone pairs derived from filled 5/6s2 states of p-block cations are an intriguing electronic and geometric structure motif that have been exploited for diverse applications such as thermoelectrics, thermochromics, photocatalysis, and nonlinear optics. Layered trivanadates are dynamic intercalation hosts, where the insertion of cations can be used to tune electron correlation, charge localization, and magnetic ordering. However, the interaction of 5/6s2 stereoactive electron lone pairs with layered trivanadates remains unexplored. In this study, we contrast s- and p-block trivanadates and map off-centering in the coordination environment and reduction in symmetry arising from the stereochemical activity of lone pair cations to the emergence of filled antibonding lone-pair 6s2-O 2p hybridized states. The former is studied by high-resolution single-crystal X-ray diffraction studies of TlV3O8 and isostructural RbV3O8 to probe distinct differences in Tl and Rb coordination environments and the resulting modulation of V-V interactions in V3O8 slabs. The latter has been probed by variable-energy hard X-ray photoelectron spectroscopy (HAXPES) measurements, which manifest orbital-specific contributions from bonding and antibonding interactions of stereoactive Tl 6s2 electron lone pairs in TlV3O8. The spectroscopic assignment of valence band states to stereoactive lone pairs is further corroborated by first-principles electronic structure calculations, crystal orbital Hamilton population analyses, and electron localization function maps. The presence of the Tl 6s2 electron lone pair in TlV3O8 brings about the off-centering of Tl+ cations, which leads to anisotropy in Tl-O bonds. The off-centering of Tl ions weakens V-O bonds in one direction, which subsequently strengthens directional V-V coupling. Magnetic measurements reveal ferromagnetic signatures for both RbV3O8 and TlV3O8. However, the differences in V···V interactions significantly affect the energy balance of the superexchange interactions, resulting in an ordering temperature of 140 K for TlV3O8 as compared to 125 K for RbV3O8. The results demonstrate the distinctive effects of stereochemically active lone pairs in modifying electronic structure near the Fermi level and for mediating superexchange interactions.

2.
Chem Mater ; 35(17): 7175-7188, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-38357226

RESUMO

The 5/6s2 lone-pair electrons of p-block cations in their lower oxidation states are a versatile electronic and geometric structure motif that can underpin lattice anharmonicity and often engender electronic and structural instabilities that underpin the function of active elements in nonlinear optics, thermochromics, thermoelectrics, neuromorphic computing, and photocatalysis. In contrast to periodic solids where lone-pair-bearing cations are part of the structural framework, installing lone-pair-bearing cations in the interstitial sites of intercalation hosts provides a means of a systematically modulating electronic structure through the choice of the group and the period of the inserted cation while preserving the overall framework connectivity. The extent of stereochemical activity and the energy positioning of lone-pair-derived mid-gap states depend on the cation identity, stoichiometry, and strength of anion hybridization. V2O5 polymorphs are versatile insertion hosts that can accommodate a broad range of s-, p-, and d-block cations. However, the insertion of lone-pair-bearing cations remains largely underexplored. In this article, we examine the implications of varying the 6s2 cations situated in interlayer sites between condensed [V4O10]n double layers. Systematic modulations of lattice distortions, electronic structure, and magnetic ordering are observed with increasing strength of stereochemical activity from group 12 to group 14 cations. We compare and contrast p-block-layered MxV2O5 (M = Hg, Tl, and Pb) compounds and map the significance of local off-centering arising from the stereochemical activity of lone-pair cations to the emergence of filled antibonding lone-pair 6s2-O 2p-hybridized mid-gap states mediated by second-order Jahn-Teller distortions. Crystallographic studies of cation coordination environments and the resulting modulation of V-V interactions have been used in conjunction with variable-energy hard X-ray photoelectron spectroscopy measurements, first-principles electronic structure calculations, and crystal orbital Hamilton population analyses to decipher the origins of stereochemical activity. Magnetic susceptibility measurements reveal antiferromagnetic signatures for all the three compounds. However, the differences in V-V interactions significantly affect the energy balance of the superexchange interactions, resulting in an ordering temperature of 160 and 260 K for Hg0.5V2O5 and δ-Tl0.5V2O5, respectively, as compared to 7 K for δ-Pb0.5V2O5. In δ-Pb0.5V2O5, the strong stereochemical activity of electron lone pairs and the resulting electrostatic repulsions enforce superlattice ordering, which strongly modifies the electronic localization patterns along the [V4O10] slabs, resulting in disrupted magnetic ordering and an anomalously low ordering temperature. The results demonstrate a versatile strategy for toggling the stereochemical activity of electron lone pairs to modify the electronic structure near the Fermi level and to mediate superexchange interactions.

3.
Acta Crystallogr E Crystallogr Commun ; 71(Pt 6): o400, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26090188

RESUMO

In the structure of the title triorganophosphine oxide, C16H19OP, the P-O bond is 1.490 (1) Å. The P atom has a distorted tetrahedral geometry. The O atom inter-acts with both phenyl groups of a neighboring mol-ecule [C⋯O = 2.930 (3) and 2.928 (4) Å]. The C-O interaction directs an extended supramolecular arrangement along the a-axis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA