Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Iran J Basic Med Sci ; 22(7): 820-826, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32373305

RESUMO

OBJECTIVES: This study explored the inter-relationship among nitric oxide, opioids, and KATP channels in the signaling pathway underlying remote ischemic preconditioning (RIPC) conferred cardioprotection. MATERIALS AND METHODS: Blood pressure cuff was placed around the hind limb of the animal and RIPC was performed by 4 cycles of inflation (5 min) followed by deflation (5 min). An ex vivo Langendorff's isolated rat heart model was used to induce ischemia (of 30 min duration)-reperfusion (of 120 min duration) injury. RESULTS: RIPC significantly decreased ischemia-reperfusion associated injury assessed by decrease in myocardial infarct, LDH and CK release, improvement in postischemic left ventricular function, LVDP, dp/dtmax, and dp/dtmin. Pretreatment with L-NAME and naloxone abolished RIPC-induced cardioprotection. Moreover, preconditioning with sodium nitroprusside (SNP) and morphine produced a cardioprotective effect in a similar manner to RIPC. L-NAME, but not naloxone, attenuated RIPC and SNP preconditioning-induced increase in serum nitrite levels. Morphine preconditioning did not increase the NO levels, probably suggesting that opioids may be the downstream mediators of NO. Furthermore, glibenclamide and naloxone blocked cardioprotection conferred by morphine and SNP, respectively. CONCLUSION: It may be proposed that the actions of NO, opioids, and KATP channels are interlinked. It is possible to suggest that RIPC may induce the release of NO from endothelium, which may trigger the synthesis of endogenous opioids, which in turn may activate heart localized KATP channels to induce cardioprotection.

2.
J Cardiovasc Pharmacol Ther ; 22(5): 467-475, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28793823

RESUMO

Remote ischemic preconditioning (RIPC) is an innovative treatment strategy that alleviates ischemia-reperfusion injury, whereby short episodes of regional ischemia and reperfusion delivered to remote organs including hind limb, kidney and intestine, and so on provide protection to the heart. The RIPC is known to reduce infarct size, serum levels of cardiac enzymes, and myocardial dysfunction in various animal species as well as in patients. There have been a large number of studies suggesting that the ATP-sensitive potassium channels (KATP channel) play a significant role as a mediator or end effector in RIPC. The present review discusses the role of KATP channels and possible mechanisms in RIPC-induced cardioprotection.


Assuntos
Precondicionamento Isquêmico Miocárdico , Canais KATP/fisiologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Animais , Humanos , Espécies Reativas de Oxigênio/metabolismo
3.
Life Sci ; 151: 250-258, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26979771

RESUMO

There is growing preclinical as well as clinical evidence supporting remote ischemic preconditioning (RIPC), in which short cycles of non-fatal ischemia followed by reperfusion to an organ or tissue distant from the heart elicits cardioprotection. It is the most practical, non-invasive, cost-free, and clinically compatible, secure procedure for reducing ischemia-reperfusion induced injury. The use of a conventional blood pressure cuff on the upper or lower limb in eliciting cardioprotection has expedited its clinical applicability. Endothelium has been documented to respond very quickly to blood flow and hypoxia by releasing different humoral factors such as endothelium derived releasing factor, endothelium derived contracting factor, endothelium derived hyperpolarizing factor. In recent years, there have been studies suggesting the key role of endothelial derived factors in RIPC induced cardioprotection. The signaling cascade involves nitric oxide, gap junctions, epoxyeicosatrienoic (EETs) acids, Ca-activated K(+) channels, angiotensin II, thromboxane A2, superoxide anions and prostacyclin. The present review describes the role of these endothelial derived factors in RIPC induced cardioprotection with possible mechanisms.


Assuntos
Fatores Biológicos/fisiologia , Cardiotônicos/metabolismo , Endotélio Vascular/metabolismo , Fatores Relaxantes Dependentes do Endotélio/fisiologia , Precondicionamento Isquêmico/métodos , Traumatismo por Reperfusão/prevenção & controle , Animais , Humanos , Modelos Cardiovasculares , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA