Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Haematologica ; 105(1): 136-147, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31018977

RESUMO

The endosteal bone marrow niche and vascular endothelial cells provide sanctuaries for leukemic cells. In murine chronic myeloid leukemia (CML) CD44 on leukemia cells and E-selectin on bone marrow endothelium are essential mediators for the engraftment of leukemic stem cells. We hypothesized that non-adhesion of CML-initiating cells to E-selectin on the bone marrow endothelium may lead to superior eradication of leukemic stem cells in CML after treatment with imatinib than imatinib alone. Indeed, here we show that treatment with the E-selectin inhibitor GMI-1271 in combination with imatinib prolongs survival of mice with CML via decreased contact time of leukemia cells with bone marrow endothelium. Non-adhesion of BCR-ABL1+ cells leads to an increase of cell cycle progression and an increase of expression of the hematopoietic transcription factor and proto-oncogene Scl/Tal1 in leukemia-initiating cells. We implicate SCL/TAL1 as an indirect phosphorylation target of BCR-ABL1 and as a negative transcriptional regulator of CD44 expression. We show that increased SCL/TAL1 expression is associated with improved outcome in human CML. These data demonstrate the BCR-ABL1-specific, cell-intrinsic pathways leading to altered interactions with the vascular niche via the modulation of adhesion molecules - which could be exploited therapeutically in the future.


Assuntos
Proteínas de Fusão bcr-abl , Leucemia Mielogênica Crônica BCR-ABL Positiva , Animais , Medula Óssea , Selectina E/genética , Células Endoteliais , Proteínas de Fusão bcr-abl/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Camundongos , Proto-Oncogene Mas , Proteína 1 de Leucemia Linfocítica Aguda de Células T
2.
Biochem Biophys Res Commun ; 498(4): 715-722, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29550484

RESUMO

Manganese Superoxide dismutase 2 (SOD2) plays a crucial role in antioxidant defense but there are no data suggesting its role in genetic instability in CML. We evaluated the effects of SOD2 silencing in human UT7 cell line expressing either non-mutated or T315I-mutated BCR-ABL. Array-CGH experiments detected in BCR-ABL-expressing cells silenced for SOD2 a major genetic instability within several chromosomal loci, especially in regions carrying the glypican family (duplicated) and ß-defensin genes (deleted). In a large cohort of patients with chronic myeloid leukemia (CML), a significant decrease of SOD2 mRNA was observed. This reduction appeared inversely correlated with leukocytosis and Sokal score, high-risk patients showing lower SOD2 levels. The analysis of anti-oxidant gene expression analysis revealed a specific down-regulation of the expression of PRDX2 in UT7-BCR-ABL and UT7-T315I cells silenced for SOD2 expression. Gene set enrichment analysis performed between the two SOD2-dependent classes of CML patients revealed a significant enrichment of Reactive Oxygen Species (ROS) Pathway. Our data provide the first evidence for a link between SOD2 expression and genetic instability in CML. Consequently, SOD2 mRNA levels should be analyzed in prospective studies as patients with low SOD2 expression could be more prone to develop a mutator phenotype under TKI therapies.


Assuntos
Proteínas de Fusão bcr-abl/genética , Regulação Leucêmica da Expressão Gênica , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Superóxido Dismutase/genética , Linhagem Celular Tumoral , Estudos de Coortes , Inativação Gênica , Humanos , Mutação , Peroxirredoxinas/genética , Mutação Puntual
3.
Leuk Res ; 60: 94-102, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28772207

RESUMO

Although it has been well-demonstrated that bone marrow mesenchymal stromal cells (MSCs) from CML patients do not belong to the Ph1-positive clone, there is growing evidence that they could play a role in the leukemogenesis process or the protection of leukemic stem cells from the effects of tyrosine kinase inhibitors (TKIs). The aim of the present study was to identify genes differentially expressed in MSCs isolated from CML patients at diagnosis (CML-MSCs) as compared to MSCs from healthy controls. Using a custom gene-profiling assay, we identified six genes over-expressed in CML-MSCs (BMP1, FOXO3, MET, MITF, NANOG, PDPN), with the two highest levels being documented for PDPN (PODOPLANIN) and NANOG. To determine whether this aberrant signature persisted in patients in deep molecular response induced by TKIs, we analyzed MSCs derived from such patients (MR-MSCs). This analysis showed that, despite the deep molecular responses, BMP1, MET, MITF, NANOG, and PDPN mRNA were upregulated in MR-MSCs. Moreover, BMP1, MITF, and NANOG mRNA expressions in MR-MSCs were found to be intermediate between control MSCs and CML-MSCs. These results suggest that CML-MSCs exhibit an abnormal gene expression pattern which might have been established during the leukemogenic process and persist in patients in deep molecular response.


Assuntos
Medula Óssea/patologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Células-Tronco Mesenquimais/patologia , Animais , Transformação Celular Neoplásica/genética , Perfilação da Expressão Gênica , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Camundongos , Inibidores de Proteínas Quinases , Proteínas Tirosina Quinases/antagonistas & inibidores , RNA Mensageiro/análise , Indução de Remissão , Regulação para Cima
4.
Exp Hematol ; 43(9): 775-80, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26118501

RESUMO

BCR-ABL induces an intrinsic genetic instability in chronic myeloid leukemia (CML). The protein breast cancer 1, early onset (BRCA1)-associated protein 1 (BAP1) is a deubiquitinase interacting with the DNA repair regulator BRCA1 and is frequently inactivated in many cancers. Here, we report that BAP1 mRNA and protein levels are downregulated in a BCR-ABL1-expressing hematopoietic cell line (UT-7/11). A decrease of BAP1 transcripts is also observed in newly diagnosed CML patients. Moreover, BAP1 protein levels are low or undetectable in CD34(+) cells from CML patients at diagnosis as compared with CD34(+) cells from normal donors. In addition, BRCA1 protein level is reduced in BCR-ABL1-expressing UT-7/11 cells. Finally, the enforced expression of BAP1 is associated with BRCA1 protein deubiquitination and restoration. These results demonstrate BAP1 as a major link with the BCR-ABL-induced downregulation of BRCA1 in CML.


Assuntos
Proteína BRCA1/metabolismo , Regulação para Baixo , Proteínas de Fusão bcr-abl/metabolismo , Regulação Leucêmica da Expressão Gênica , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Proteínas Supressoras de Tumor/biossíntese , Ubiquitina Tiolesterase/biossíntese , Proteína BRCA1/genética , Linhagem Celular , Proteínas de Fusão bcr-abl/genética , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Estabilidade Proteica , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética
5.
Med Sci (Paris) ; 30(4): 452-61, 2014 Apr.
Artigo em Francês | MEDLINE | ID: mdl-24801043

RESUMO

The physiological hematopoietic niche located in bone marrow is a pluricellular structure whose components are now well identified. Within this microenvironment, hematopoietic stem cells are in direct contact with mesenchymal stromal cells, osteoblasts and sinusoidal endothelial cells. These close relationships drive specialized cellular functions (proliferation/quiescence, differentiation/self-renewal) ensuring an efficient hematopoiesis. Chronic myeloid leukemia (CML) is a major model of leukemic hematopoiesis. The BCR-ABL1 tyrosine kinase, constitutively activated in CML, plays a critical role in the pathogenesis of the disease. An intensive cross-talk between CML progenitors and the components of the hematopoietic niche has recently been demonstrated. Consequently, the occurrence of the so-called leukemic niche promotes both the proliferation of myeloid cells and the maintenance of quiescent leukemic stem cells. This bone marrow niche could also protect CML stem cells from tyrosine kinase inhibitors and probably contribute to their resistance towards targeted therapies.


Assuntos
Hematopoese/fisiologia , Sistema Hematopoético/fisiologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Células-Tronco Neoplásicas/fisiologia , Animais , Humanos
6.
Oncoscience ; 1(1): 57-68, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25593988

RESUMO

Tyrosine kinase inhibitors (TKIs) have profoundly changed the natural history of chronic myeloid leukemia (CML). However, acquired resistance to imatinib, dasatinib or nilotinib (1(st) and 2(nd) generation TKIs), due in part to BCR-ABL1 kinase mutations, has been largely described. These drugs are ineffective on the T315I gatekeeper substitution, which remains sensitive to 3(rd) generation TKI ponatinib. It has recently been suggested that the hematopoietic niche could protect leukemic cells from targeted therapy. In order to investigate the role of a stromal niche in mutation-related resistance, we developed a niche-based cell mutagenesis assay. For this purpose, ENU (N-ethyl-N-nitrosourea)-exposed UT-7 cells expressing non-mutated or T315I-mutated BCR-ABL1 were cultured with or without murine MS-5 stromal cells and in the presence of imatinib, dasatinib, nilotinib, or ponatinib. In the assays relative to 1(st) and 2(nd) generation TKIs, which were performed on non-mutated BCR-ABL1 cells, our data highlighted the increasing efficacy of the latter, but did not reveal any substantial effect of the niche. In ponatinib assays performed on both non-mutated and T315I-mutated BCR-ABL1 cells, an increased number of resistant clones were observed in the presence of MS-5. Present data suggested that T315I mutants need either compound mutations (e.g. E255K/T315I) or a stromal niche to escape from ponatinib. Using array-comparative genomic hybridization experiments, we found an increased number of variations (involving some recurrent chromosome regions) in clones cultured on MS-5 feeder. Overall, our study suggests that the hematopoietic niche could play a crucial role in conferring resistance to ponatinib, by providing survival signals and favoring genetic instability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...