Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Res ; 277: 127512, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37826985

RESUMO

The human complement system is an important part of the innate immune response in the fight against invasive bacteria. Complement responses can be activated independently by the classical pathway, the lectin pathway, or the alternative pathway, each resulting in the formation of a C3 convertase that produces the anaphylatoxin C3a and the opsonin C3b by specifically cutting C3. Other important features of complement are the production of the chemotactic C5a peptide and the generation of the membrane attack complex to lyse intruding pathogens. Invasive pathogens like Staphylococcus aureus and several species of the genus Streptococcus have developed a variety of complement evasion strategies to resist complement activity thereby increasing their virulence and potential to cause disease. In this review, we focus on secreted complement evasion factors that assist the bacteria to avoid opsonization and terminal pathway lysis. We also briefly discuss the potential role of complement evasion factors for the development of vaccines and therapeutic interventions.


Assuntos
Cocos Gram-Positivos , Infecções Estafilocócicas , Humanos , Imunidade Inata , Sistema Imunitário , Evasão da Resposta Imune
2.
Methods Mol Biol ; 2674: 119-129, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37258964

RESUMO

Group A Streptococcus (GAS, Streptococcus pyogenes) is an exclusively human pathogen that causes a range of diseases, including pharyngitis, tonsillitis, impetigo, erysipelas, necrotizing fasciitis, and toxic shock syndrome. Post-streptococcal sequelae include acute rheumatic fever and rheumatic heart disease. The bacterium produces a large arsenal of virulence factors that contribute to host tissue adhesion/colonization, bacterial spread, and host immune evasion. Immune evasion factors include proteins that interfere with complement, a system of plasma proteins that are activated by pathogens resulting in a variety of reactions on the surface of the pathogen. This leads to the activation of active components with a variety of effector functions, such as cell lysis, opsonization, and chemotaxis of phagocytes to the site of infection. We have recently identified a novel "complement evasion factor" (CEF) in S. pyogenes. CEF directly interacts with complement proteins C1r, C1s, C3, and C5, interrupts all three complement pathways, and prevents opsonization of the bacterial surface with C3b. We here present methods used to analyze the complement interference of CEF.


Assuntos
Infecções Estreptocócicas , Streptococcus pyogenes , Humanos , Streptococcus pyogenes/metabolismo , Virulência , Proteínas do Sistema Complemento , Fatores de Virulência/metabolismo , Fatores Imunológicos , Proteínas de Bactérias/metabolismo
3.
Virulence ; 13(1): 225-240, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35094646

RESUMO

Streptococcus pyogenes, a leading human pathogen, is responsible for a wide range of diseases, including skin and soft tissue infections and severe invasive diseases. S. pyogenes produces a large arsenal of virulence factors, including several immune evasion factors. We have identified an open reading frame (spy0136) in the S. pyogenes SF370 genome encoding a protein of unknown function. Using recombinant Spy0136 in a pull-down assay with human plasma and ELISA, we have identified four complement proteins (C1r, C1s, C3, and C5) as binding partners. Treatment of the complement proteins with PNGase F abrogated binding to C1s, C3, and C5, indicating glycan-dependent interactions. rSpy0136 inhibited complement-mediated hemolysis and interfered with all three complement pathways in a Wieslab complement assay. Furthermore, rSpy0136 inhibited deposition of the C3b opsonin and the membrane attack complex (MAC) on the surface of S. pyogenes. We therefore named the previously unknown protein 'complement evasion factor' (CEF).An S. pyogenes Δspy0136/cef deletion mutant showed decreased virulence in an in-vitro whole blood killing assay and a Galleria mellonella (wax moth) infection model. Furthermore, an L. lactis spy0136/cef gain-of-function mutant showed increased survival during growth in whole human blood. Analysis of serum samples from patients with invasive S. pyogenes revealed Spy0136/CEF sero-conversion indicating expression during disease. In summary, we have identified a novel S. pyogenes immune evasion factor that binds to several complement proteins to interfere with complement function. This is the first example of a S. pyogenes virulence factor binding to several different target proteins via glycan-dependent interactions.


Assuntos
Infecções Estreptocócicas , Streptococcus pyogenes , Proteínas de Bactérias/metabolismo , Proteínas do Sistema Complemento , Humanos , Evasão da Resposta Imune , Streptococcus pyogenes/genética , Fatores de Virulência/metabolismo
4.
Iran J Biotechnol ; 19(1): e2618, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34179193

RESUMO

BACKGROUND: Brucella spp. are intracellular pathogens, therefore cell-mediated immunity is the main response to inhibit survival and growth of the bacteria in vertebrate host. OBJECTIVE: Many eukaryotic plasmid vectors are being used in setting up DNA vaccines which may show different efficiencies in same conditions. This is important in designing the vaccines and immunization strategies. We looked into the probable differences of immune responses induced by different eukaryotic DNA plasmid vectors (pcDNA3.1 and pVAX1) harboring the same Omp31 gene of B. melitensis. MATERIALS AND METHODS: Female BALB/c mice were immunized with pcDNA -omp31 and pVAX-omp31 and further boosted with recombinant Omp31. Subclasses of specific serum IgG against the rOmp31 were measured by ELISA. Cytokines responses to rOmp31 in Splenocyte cultures of the immunized mice were evaluated by measuring the production of IL-4, IL-10, IL-12 and IFN-γ. Protective responses of the immunized mice were evaluated by intraperitoneal challenge with pathogenic Brucella melitensis 16M and Brucella ovis PA76250. RESULTS: Both DNA vaccine candidates conferred potent Th1-type responses with higher levels of cytokines and immunoglobulins observed in mice immunized with pVAX-omp31. Although pcDNA-omp31 and pVAX-omp31 both elicited protective immunity, mice immunized with the latter showed a higher protection against both B. melitensis and B. ovis PA76250. CONCLUSION: The results of this study highlight the significant differences between efficiency of diverse plasmid backbones in DNA vaccines which code for an identical antigen. Comparing various plasmid vectors should be considered as an essential part of the studies aiming construction of DNA vaccines for intracellular pathogens.

5.
Braz J Microbiol ; 50(4): 979-984, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31352634

RESUMO

Control of brucellosis as a worldwide zoonotic disease is based on vaccination of animals and diagnosis of infected cases to be eradicated. Accurate and rapid detection of infected animals is of critical importance for preventing the spread of disease. Current detection of brucellosis is based on whole-cell antigens and investigating serum antibodies against Brucella lipopolysaccharide (LPS). The critical disadvantage is misdiagnosis of vaccinated animals as infected ones and also cross-reactions with other Gram-negative bacteria. Recombinant outer membrane protein 2b (Omp2b) of Brucella abortus was evaluated as a novel serodiagnostic target in comparison to conventional tests which are based on LPS. Recombinant Omp2b (rOmp2b) was expressed in Escherichia coli BL21 and purified by Ni2+-based chromatography. rOmp2b was evaluated in an indirect enzyme-linked immunosorbent assay (ELISA) system for diagnosis of brucellosis, with sera from Brucella-infected mice along with negative sera and sera from mice which were inoculated with other Gram-negative species for assurance of specificity. Thereafter, cattle sera collected from different regions were assessed along with known negative and known positive serum samples. We found that Omp2b can discriminate between Brucella-infected animals and non-infected ones. Results for assessment of two hundred and fifty cattle sera by Omp2b-based indirect ELISA which were compared to Rose Bengal plate agglutination test (RBPT) and serum tube agglutination test (SAT) showed that our proposed procedure has the sensitivity of 88.5%, specificity of 100%, and accuracy of 90.8%. We suggest that recombinant Omp2b could be used as a protein antigen for diagnosis of brucellosis in domestic animals and can be evaluated for detection of human brucellosis.


Assuntos
Antígenos de Bactérias/análise , Proteínas de Bactérias/análise , Brucella abortus/isolamento & purificação , Brucelose/veterinária , Doenças dos Bovinos/diagnóstico , Ensaio de Imunoadsorção Enzimática/métodos , Porinas/análise , Testes Sorológicos/métodos , Animais , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Brucella abortus/genética , Brucella abortus/imunologia , Brucelose/diagnóstico , Brucelose/microbiologia , Bovinos , Doenças dos Bovinos/microbiologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Porinas/genética , Porinas/imunologia
6.
Mol Biol Rep ; 41(8): 5207-14, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24842263

RESUMO

Despite a huge number of studies towards vaccine development against human immunodeficiency virus-1, no effective vaccine has been approved yet. Thus, new vaccines should be provided with new formulations. Herein, a new DNA vaccine candidate encoding conserved and immunogenic epitopes from HIV-1 antigens of tat, pol, gag and env is designed and constructed. After bioinformatics analyses to find the best epitopes and their tandem, nucleotide sequence corresponding to the designed multiepitope was synthesized and cloned into pcDNA3.1+ vector. Expression of pcDNA3.1-tat/pol/gag/env plasmid was evaluated in HEK293T cells by RT-PCR and western-blotting. Seven groups of BALB/c mice were intramuscularly immunized three times either with 50, 100, 200 µg of plasmid in 2-week intervals or with similar doses of insert-free plasmid. Two weeks after the last injection, proliferation of T cells and secretion of IL4 and IFN-γ cytokines were evaluated using Brdu and ELISA methods, respectively. Results showed the proper expression of the plasmid in protein and mRNA levels. Moreover, the designed multiepitope plasmid was capable of induction of both proliferation responses as well as IFN-γ and IL-4 cytokine production in a considerable level compared to the control groups. Overall, our primary data warranted further detailed studies on the potency of this vaccine.


Assuntos
Vacinas contra a AIDS/imunologia , Epitopos/imunologia , Vacinas de DNA/imunologia , Animais , Formação de Anticorpos/imunologia , Proliferação de Células , Feminino , Vetores Genéticos , Células HEK293 , HIV-1 , Humanos , Interferon gama/imunologia , Interleucina-4/imunologia , Linfócitos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Plasmídeos/genética
7.
Mol Biotechnol ; 56(6): 487-97, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24619477

RESUMO

Protein antigens have drawn a lot of attention from investigators working on tuberculosis vaccines. These proteins can be used to improve the immunogenicity of the new generation BCG vaccines or even replace them completely. Recombinant technology is used to insure the production of pure mycobacterial antigens in high quantities. Mycolyl transferase 85B (Ag85B) is a potent, mycobacterial antigen that significantly stimulates immune responses. Since Ag85B is an apolar protein, production of the water-soluble antigen is of interest. In this work, we report a systematic optimization strategy concerning cloning systems and purification methods, aiming at increasing the yield of recombinant Ag85B. Our optimized method resulted in a yield of 8 mg of recombinant Ag85B from 1 liter of induced culture (400 µg/ml) by using pET32a(+), Escherichia coli Rosseta-gami™(DE3) pLysS and a Ni-NTA agarose-based procedure and on-column re-solubilization. The purified recombinant Ag85B showed strong immunostimulating properties by inducing high levels of TNF-α, IFN-γ, IL-12, and IgG2a in immunized mice, therefore it can effectively be applied in TB vaccine researches.


Assuntos
Aciltransferases/genética , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Tuberculose/tratamento farmacológico , Aciltransferases/biossíntese , Aciltransferases/imunologia , Aciltransferases/isolamento & purificação , Animais , Antígenos de Bactérias/biossíntese , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/isolamento & purificação , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/isolamento & purificação , Clonagem Molecular , Regulação Bacteriana da Expressão Gênica , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Interferon gama/metabolismo , Interleucina-12/imunologia , Interleucina-12/metabolismo , Camundongos , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/imunologia , Tuberculose/genética , Tuberculose/prevenção & controle , Vacinas contra a Tuberculose/genética , Vacinas contra a Tuberculose/imunologia , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
8.
Tanaffos ; 10(4): 23-30, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-25191384

RESUMO

BACKGROUND: Antigen 85 complex of Mycobacterium tuberculosis includes three immunogenic proteins which are TB vaccine candidates of great importance. As they are very hard to be achieved in natural form, recombinant production of them fuels immunological experiments. Production of such apolar mycobacterial proteins located in the cell wall faces substantial challenges mainly regarding their solubility. This study reports the production of soluble recombinant Ag85B with an efficient yield. MATERIALS AND METHODS: Ag85B gene was cloned in pJET1.2 and subsequently in pET32a (+). Both recombinant plasmids were sequenced. Expression of the recombinant protein was induced with 1mM IPTG. Recombinant Ag85B was purified through dissolving inclusions in 8M urea buffer, absorbing to Ni-NTA resins, washing by buffers with decreasing urea concentrations and finally eluted in imidazole. Western blot analysis was performed using anti-6His tag antibody, rabbit anti- M. tuberculosis polyclonal antibody and serum of hospitalized TB patients. RESULTS: Ag85B gene was successfully cloned in both plasmid vectors. The recombinant Ag85B was expressed in E. coli host and purified with significant yield. CONCLUSION: Western blot results along with those of sequencing ensured accurate production of recombinant Ag85B and retaining of its antigenic structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...