Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3659, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37339985

RESUMO

Iron is essential to cells as a cofactor in enzymes of respiration and replication, however without correct storage, iron leads to the formation of dangerous oxygen radicals. In yeast and plants, iron is transported into a membrane-bound vacuole by the vacuolar iron transporter (VIT). This transporter is conserved in the apicomplexan family of obligate intracellular parasites, including in Toxoplasma gondii. Here, we assess the role of VIT and iron storage in T. gondii. By deleting VIT, we find a slight growth defect in vitro, and iron hypersensitivity, confirming its essential role in parasite iron detoxification, which can be rescued by scavenging of oxygen radicals. We show VIT expression is regulated by iron at transcript and protein levels, and by altering VIT localization. In the absence of VIT, T. gondii responds by altering expression of iron metabolism genes and by increasing antioxidant protein catalase activity. We also show that iron detoxification has an important role both in parasite survival within macrophages and in virulence in a mouse model. Together, by demonstrating a critical role for VIT during iron detoxification in T. gondii, we reveal the importance of iron storage in the parasite and provide the first insight into the machinery involved.


Assuntos
Parasitos , Toxoplasma , Animais , Camundongos , Toxoplasma/metabolismo , Vacúolos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Parasitos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
2.
Microbiology (Reading) ; 167(12)2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34898419

RESUMO

The acquisition and storage of metals has been a preoccupation of life for millennia. Transition metals, in particular iron, copper and zinc, have vital roles within cells. However, metals also make dangerous cargos; inappropriate uptake or storage of transition metals leads to cell death. This paradox has led to cells developing elegant and frequently redundant mechanisms for fine-tuning local metal concentrations. In the context of infection, pathogens must overcome further hurdles, as hosts act to weaponize metal availability to prevent pathogen colonization and spread. Here, we detail the methods used by the Apicomplexa, a large family of eukaryotic parasites, to obtain and store essential metals.


Assuntos
Parasitos , Animais , Transporte Biológico , Cobre , Ferro/metabolismo , Parasitos/metabolismo , Zinco/metabolismo
3.
mBio ; 11(6)2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33173001

RESUMO

The recent emergence of Plasmodium falciparum parasite resistance to the first line antimalarial drug artemisinin is of particular concern. Artemisinin resistance is primarily driven by mutations in the P. falciparum K13 protein, which enhance survival of early ring-stage parasites treated with the artemisinin active metabolite dihydroartemisinin in vitro and associate with delayed parasite clearance in vivo However, association of K13 mutations with in vivo artemisinin resistance has been problematic due to the absence of a tractable model. Herein, we have employed CRISPR/Cas9 genome editing to engineer selected orthologous P. falciparum K13 mutations into the K13 gene of an artemisinin-sensitive Plasmodium berghei rodent model of malaria. Introduction of the orthologous P. falciparum K13 F446I, M476I, Y493H, and R539T mutations into P. berghei K13 yielded gene-edited parasites with reduced susceptibility to dihydroartemisinin in the standard 24-h in vitro assay and increased survival in an adapted in vitro ring-stage survival assay. Mutant P. berghei K13 parasites also displayed delayed clearance in vivo upon treatment with artesunate and achieved faster recrudescence upon treatment with artemisinin. Orthologous C580Y and I543T mutations could not be introduced into P. berghei, while the equivalents of the M476I and R539T mutations resulted in significant growth defects. Furthermore, a Plasmodium-selective proteasome inhibitor strongly synergized dihydroartemisinin action in these P. berghei K13 mutant lines, providing further evidence that the proteasome can be targeted to overcome artemisinin resistance. Taken together, our findings provide clear experimental evidence for the involvement of K13 polymorphisms in mediating susceptibility to artemisinins in vitro and, most importantly, under in vivo conditions.IMPORTANCE Recent successes in malaria control have been seriously threatened by the emergence of Plasmodium falciparum parasite resistance to the frontline artemisinin drugs in Southeast Asia. P. falciparum artemisinin resistance is associated with mutations in the parasite K13 protein, which associates with a delay in the time required to clear the parasites upon drug treatment. Gene editing technologies have been used to validate the role of several candidate K13 mutations in mediating P. falciparum artemisinin resistance in vitro under laboratory conditions. Nonetheless, the causal role of these mutations under in vivo conditions has been a matter of debate. Here, we have used CRISPR/Cas9 gene editing to introduce K13 mutations associated with artemisinin resistance into the related rodent-infecting parasite, Plasmodium berghei Phenotyping of these P. berghei K13 mutant parasites provides evidence of their role in mediating artemisinin resistance in vivo, which supports in vitro artemisinin resistance observations. However, we were unable to introduce some of the P. falciparum K13 mutations (C580Y and I543T) into the corresponding amino acid residues, while other introduced mutations (M476I and R539T equivalents) carried pronounced fitness costs. Our study provides evidence of a clear causal role of K13 mutations in modulating susceptibility to artemisinins in vitro and in vivo using the well-characterized P. berghei model. We also show that inhibition of the P. berghei proteasome offsets parasite resistance to artemisinins in these mutant lines.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Resistência a Medicamentos , Malária/parasitologia , Plasmodium berghei/efeitos dos fármacos , Plasmodium berghei/genética , Inibidores de Proteassoma/farmacologia , Proteínas de Protozoários/genética , Animais , Feminino , Humanos , Malária/tratamento farmacológico , Camundongos , Mutação/efeitos dos fármacos , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Protozoários/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...