Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Turk J Chem ; 44(5): 1376-1385, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488237

RESUMO

The presented work demonstrates the preparation of copper nanoparticles (CuNPs) via aqueous leaves extract of Ziziphus mauritiana L. ( Zm ) using hydrazine as a reducing agent. Various parameters such as volume of extract, concentration of hydrazine hydrate, concentration of copper chloride, and pH of the solution were optimized to obtain Ziziphus mauritiana L. leaves extract derived copper nanoparticles ( Zm -CuNPs). Brownish red color was initial indication of the formation of Zm -CuNPs while it was confirmed by surface plasmon resonance (SPR) band at wavelength of 584 nm using ultraviolet-visible (UV-vis) spectroscopy. Synthesized Zm -CuNPs were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffractometry (XRD). AFM images showed that the particle size of Zm -CuNPs was from 7 to 17 nm with an average size of 11.3 nm. Fabricated sensor ( Zm -CuNPs) were used as a colorimetric sensor for the detection of Ag + at a linear range between 0.67 × 10 -6 - 9.3 × 10 -6 with R 2 value of 0.992. For real water samples, limit of quantification (LOQ) and limit of detection (LOD) for Ag + was found to be 330 × 10 -9 and 100 × 10 -9 , respectively.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 173: 241-250, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27665192

RESUMO

Selectivity of gold nanoparticles (AuNPs) depends upon surface functionality; small changes in structure or concentration bring significant changes in the behavior of AuNPs. In this study, citrate-capped AuNPs were functionalized with ortho-dicarboxylate substituted pyridine (2,3-PDCA) and detailed studies on experimental conditions were carried out to check the stability of AuNPs and response for Cr3+. Stability of PDCA-AuNPs was found sensitive to the pH, ionic strength of buffer and its type. Capping behavior of PDCA on C-AuNPs was examined by FTIR spectroscopy. Surface morphology and size of synthesized AuNPs were confirmed by AFM, XRD, and DLS techniques where particles were found 11nm in size, monodisperse and spherical in shape. Interaction of stabilized AuNPs was tested with various metal ions; where Cr3+ induced the changes in localized surface plasmon band (LSPR) of PDCA-AuNPs which leads to a color change from wine red to violet blue. The phenomenon is explained as cooperative effect of citrate and pyridine nitrogen on surface of AuNPs in contrary to meta-dicarboxylate substituted pyridine derivatives. Further, under optimized and controlled conditions Cr3+ shows linear response with decrease in absorbance at LSPR intensity of AuNPs (518nm). Moreover, to demonstrate the applicability of method, Cr3+ was determined in the presence of Cr (VI) which shows 96% recovery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...