Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Med ; 9(10)2020 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-33080990

RESUMO

During surgery, ATP from damaged cells induces the release of interleukin-1ß, a potent pro-inflammatory cytokine that contributes to the development of postoperative systemic inflammation, sepsis and multi-organ damage. We recently demonstrated that C-reactive protein (CRP) inhibits the ATP-induced release of monocytic interleukin-1ß, although high CRP levels are deemed to be a poor prognostic marker. Here, we retrospectively investigated if preoperative CRP levels correlate with postoperative CRP, leukocyte counts and fever in the context of anatomical lung resection and systematic lymph node dissection as first line lung cancer therapy. No correlation was found in the overall results. In men, however, preoperative CRP and leukocyte counts positively correlated on postoperative days one to two, and a negative correlation of CRP and fever was seen in women. These correlations were more pronounced in men taking statins and in statin-naïve women. Accordingly, the inhibitory effect of CRP on the ATP-induced interleukin-1ß release was blunted in monocytes from coronary heart disease patients treated with atorvastatin compared to monocytes obtained before medication. Hence, the common notion that elevated CRP levels predict more severe postoperative inflammation should be questioned. We rather hypothesize that in women and statin-naïve patients, high CRP levels attenuate trauma-induced increases in inflammatory markers.

2.
J Clin Med ; 9(9)2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32906646

RESUMO

Amyloid-ß peptide (Aß1-42), the cleavage product of the evolutionary highly conserved amyloid precursor protein, presumably plays a pathogenic role in Alzheimer's disease. Aß1-42 can induce the secretion of the pro-inflammatory cytokine intereukin-1ß (IL-1ß) in immune cells within and out of the nervous system. Known interaction partners of Aß1-42 are α7 nicotinic acetylcholine receptors (nAChRs). The physiological functions of Aß1-42 are, however, not fully understood. Recently, we identified a cholinergic mechanism that controls monocytic release of IL-1ß by canonical and non-canonical agonists of nAChRs containing subunits α7, α9, and/or α10. Here, we tested the hypothesis that Aß1-42 modulates this inhibitory cholinergic mechanism. Lipopolysaccharide-primed monocytic U937 cells and human mononuclear leukocytes were stimulated with the P2X7 receptor agonist 2'(3')-O-(4-benzoylbenzoyl)adenosine-5'-triphosphate triethylammonium salt (BzATP) in the presence or absence of nAChR agonists and Aß1-42. IL-1ß concentrations were measured in the supernatant. Aß1-42 dose-dependently (IC50 = 2.54 µM) reversed the inhibitory effect of canonical and non-canonical nicotinic agonists on BzATP-mediated IL-1ß-release by monocytic cells, whereas reverse Aß42-1 was ineffective. In conclusion, we discovered a novel pro-inflammatory Aß1-42 function that enables monocytic IL-1ß release in the presence of nAChR agonists. These findings provide evidence for a novel physiological function of Aß1-42 in the context of sterile systemic inflammation.

3.
Front Immunol ; 10: 664, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31019507

RESUMO

Interleukin-1ß (IL-1ß) is a potent, pro-inflammatory cytokine of the innate immune system that plays an essential role in host defense against infection. However, elevated circulating levels of IL-1ß can cause life-threatening systemic inflammation. Hence, mechanisms controlling IL-1ß maturation and release are of outstanding clinical interest. Secretory leukocyte protease inhibitor (SLPI), in addition to its well-described anti-protease function, controls the expression of several pro-inflammatory cytokines on the transcriptional level. In the present study, we tested the potential involvement of SLPI in the control of ATP-induced, inflammasome-dependent IL-1ß maturation and release. We demonstrated that SLPI dose-dependently inhibits the ATP-mediated inflammasome activation and IL-1ß release in human monocytic cells, without affecting the induction of pro-IL-1ß mRNA by LPS. In contrast, the ATP-independent IL-1ß release induced by the pore forming bacterial toxin nigericin is not impaired, and SLPI does not directly modulate the ion channel function of the human P2X7 receptor heterologously expressed in Xenopus laevis oocytes. In human monocytic U937 cells, however, SLPI efficiently inhibits ATP-induced ion-currents. Using specific inhibitors and siRNA, we demonstrate that SLPI activates the calcium-independent phospholipase A2ß (iPLA2ß) and leads to the release of a low molecular mass factor that mediates the inhibition of IL-1ß release. Signaling involves nicotinic acetylcholine receptor subunits α7, α9, α10, and Src kinase activation and results in an inhibition of ATP-induced caspase-1 activation. In conclusion, we propose a novel anti-inflammatory mechanism induced by SLPI, which inhibits the ATP-dependent maturation and secretion of IL-1ß. This novel signaling pathway might lead to development of therapies that are urgently needed for the prevention and treatment of systemic inflammation.


Assuntos
Trifosfato de Adenosina/metabolismo , Interleucina-1beta/metabolismo , Monócitos/citologia , Monócitos/metabolismo , Inibidor Secretado de Peptidases Leucocitárias/genética , Animais , Linhagem Celular , Células Cultivadas , Citocinas/biossíntese , Expressão Gênica , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Inibidor Secretado de Peptidases Leucocitárias/metabolismo , Transdução de Sinais , Quinases da Família src/metabolismo
4.
Front Immunol ; 9: 877, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29922281

RESUMO

While interleukin (IL)-1ß is a potent pro-inflammatory cytokine involved in host defense, high levels can cause life-threatening sterile inflammation including systemic inflammatory response syndrome. Hence, the control of IL-1ß secretion is of outstanding biomedical importance. In response to a first inflammatory stimulus such as lipopolysaccharide, pro-IL-1ß is synthesized as a cytoplasmic inactive pro-form. Extracellular ATP originating from injured cells is a prototypical second signal for inflammasome-dependent maturation and release of IL-1ß. The human anti-protease alpha-1 antitrypsin (AAT) and IL-1ß regulate each other via mechanisms that are only partially understood. Here, we demonstrate that physiological concentrations of AAT efficiently inhibit ATP-induced release of IL-1ß from primary human blood mononuclear cells, monocytic U937 cells, and rat lung tissue, whereas ATP-independent IL-1ß release is not impaired. Both, native and oxidized AAT are active, suggesting that the inhibition of IL-1ß release is independent of the anti-elastase activity of AAT. Signaling of AAT in monocytic cells involves the lipid scavenger receptor CD36, calcium-independent phospholipase A2ß, and the release of a small soluble mediator. This mediator leads to the activation of nicotinic acetylcholine receptors, which efficiently inhibit ATP-induced P2X7 receptor activation and inflammasome assembly. We suggest that AAT controls ATP-induced IL-1ß release from human mononuclear blood cells by a novel triple-membrane-passing signaling pathway. This pathway may have clinical implications for the prevention of sterile pulmonary and systemic inflammation.


Assuntos
Inflamassomos/imunologia , Interleucina-1beta/imunologia , Síndrome de Resposta Inflamatória Sistêmica/imunologia , alfa 1-Antitripsina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Antígenos CD36/metabolismo , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Leucócitos Mononucleares , Cultura Primária de Células , Ratos , Receptores Purinérgicos P2X7/metabolismo , Células U937 , alfa 1-Antitripsina/imunologia
5.
Front Cell Neurosci ; 11: 189, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28725182

RESUMO

Recently, we discovered a cholinergic mechanism that inhibits the adenosine triphosphate (ATP)-dependent release of interleukin-1ß (IL-1ß) by human monocytes via nicotinic acetylcholine receptors (nAChRs) composed of α7, α9 and/or α10 subunits. Furthermore, we identified phosphocholine (PC) and dipalmitoylphosphatidylcholine (DPPC) as novel nicotinic agonists that elicit metabotropic activity at monocytic nAChR. Interestingly, PC does not provoke ion channel responses at conventional nAChRs composed of subunits α9 and α10. The purpose of this study is to determine the composition of nAChRs necessary for nicotinic signaling in monocytic cells and to test the hypothesis that common metabolites of phosphatidylcholines, lysophosphatidylcholine (LPC) and glycerophosphocholine (G-PC), function as nAChR agonists. In peripheral blood mononuclear cells from nAChR gene-deficient mice, we demonstrated that inhibition of ATP-dependent release of IL-1ß by acetylcholine (ACh), nicotine and PC depends on subunits α7, α9 and α10. Using a panel of nAChR antagonists and siRNA technology, we confirmed the involvement of these subunits in the control of IL-1ß release in the human monocytic cell line U937. Furthermore, we showed that LPC (C16:0) and G-PC efficiently inhibit ATP-dependent release of IL-1ß. Of note, the inhibitory effects mediated by LPC and G-PC depend on nAChR subunits α9 and α10, but only to a small degree on α7. In Xenopuslaevis oocytes heterologously expressing different combinations of human α7, α9 or α10 subunits, ACh induced canonical ion channel activity, whereas LPC, G-PC and PC did not. In conclusion, we demonstrate that canonical nicotinic agonists and PC elicit metabotropic nAChR activity in monocytes via interaction of nAChR subunits α7, α9 and α10. For the metabotropic signaling of LPC and G-PC, nAChR subunits α9 and α10 are needed, whereas α7 is virtually dispensable. Furthermore, molecules bearing a PC group in general seem to regulate immune functions without perturbing canonical ion channel functions of nAChR.

6.
Am J Physiol Regul Integr Comp Physiol ; 308(7): R636-49, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25632025

RESUMO

In pulmonary epithelia, ß-adrenergic agonists regulate the membrane abundance of the epithelial sodium channel (ENaC) and, thereby, control the rate of transepithelial electrolyte absorption. This is a crucial regulatory mechanism for lung liquid clearance at birth and thereafter. This study investigated the influence of the gaseous signaling molecule hydrogen sulfide (H2S) on ß-adrenergic agonist-regulated pulmonary sodium and liquid absorption. Application of the H2S-liberating molecule Na2S (50 µM) to the alveolar compartment of rat lungs in situ decreased baseline liquid absorption and abrogated the stimulation of liquid absorption by the ß-adrenergic agonist terbutaline. There was no additional effect of Na2S over that of the ENaC inhibitor amiloride. In electrophysiological Ussing chamber experiments with native lung epithelia (Xenopus laevis), Na2S inhibited the stimulation of amiloride-sensitive current by terbutaline. ß-adrenergic agonists generally increase ENaC abundance by cAMP formation and activation of PKA. Activation of this pathway by forskolin and 3-isobutyl-1-methylxanthine increased amiloride-sensitive currents in H441 pulmonary epithelial cells. This effect was inhibited by Na2S in a dose-dependent manner (5-50 µM). Na2S had no effect on cellular ATP concentration, cAMP formation, and activation of PKA. By contrast, Na2S prevented the cAMP-induced increase in ENaC activity in the apical membrane of H441 cells. H441 cells expressed the H2S-generating enzymes cystathionine-ß-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase, and they produced H2S amounts within the employed concentration range. These data demonstrate that H2S prevents the stimulation of ENaC by cAMP/PKA and, thereby, inhibits the proabsorptive effect of ß-adrenergic agonists on lung liquid clearance.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Células Epiteliais/efeitos dos fármacos , Canais Epiteliais de Sódio/efeitos dos fármacos , Sulfeto de Hidrogênio/metabolismo , Alvéolos Pulmonares/efeitos dos fármacos , Absorção pelo Trato Respiratório/efeitos dos fármacos , Sódio/metabolismo , Sulfetos/farmacologia , Terbutalina/farmacologia , Animais , Linhagem Celular Tumoral , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/genética , Cistationina gama-Liase/metabolismo , Relação Dose-Resposta a Droga , Ativação Enzimática , Células Epiteliais/metabolismo , Canais Epiteliais de Sódio/metabolismo , Humanos , Masculino , Potenciais da Membrana , Alvéolos Pulmonares/metabolismo , RNA Mensageiro/metabolismo , Ratos Wistar , Sulfurtransferases/genética , Sulfurtransferases/metabolismo , Fatores de Tempo , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...