Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(5): 114205, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38753485

RESUMO

The advent of PARP inhibitors (PARPis) has profoundly changed the treatment landscape of BRCA1/BRCA2-mutated cancers. Despite this, the development of resistance to these compounds has become a major challenge. Hence, a detailed understanding of the mechanisms underlying PARPi sensitivity is crucially needed. Here, we show that loss of the POLE3-POLE4 subunits of DNA polymerase epsilon (Polε) strongly sensitizes cancer cells to PARPis in a Polε level-independent manner. Loss of POLE3-POLE4 is not associated with defective RAD51 foci formation, excluding a major defect in homologous recombination. On the contrary, treatment with PARPis triggers replicative gap accumulation in POLE3-POLE4 knockout (KO) cells in a PRIMPOL-dependent manner. In addition to this, the loss of POLE3-POLE4 further sensitizes BRCA1-silenced cells to PARPis. Importantly, the knockdown of 53BP1 does not rescue PARPi sensitivity in POLE3-POLE4 KO cells, bypassing a common PARPi resistance mechanism and outlining a potential strategy to sensitize cancer cells to PARPis.


Assuntos
Inibidores de Poli(ADP-Ribose) Polimerases , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Humanos , Replicação do DNA/efeitos dos fármacos , Linhagem Celular Tumoral , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , DNA Polimerase II/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Rad51 Recombinase/metabolismo
2.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36614307

RESUMO

Recently, the oncogenic role of lemur tyrosine kinase 3 (LMTK3) has been well established in different tumor types, highlighting it as a viable therapeutic target. In the present study, using in vitro and cell-based assays coupled with biophysical analyses, we identify a highly selective small molecule LMTK3 inhibitor, namely C36. Biochemical/biophysical and cellular studies revealed that C36 displays a high in vitro selectivity profile and provides notable therapeutic effect when tested in the National Cancer Institute (NCI)-60 cancer cell line panel. We also report the binding affinity between LMTK3 and C36 as demonstrated via microscale thermophoresis (MST). In addition, C36 exhibits a mixed-type inhibition against LMTK3, consistent with the inhibitor overlapping with both the adenosine 5'-triphosphate (ATP)- and substrate-binding sites. Treatment of different breast cancer cell lines with C36 led to decreased proliferation and increased apoptosis, further reinforcing the prospective value of LMTK3 inhibitors for cancer therapy.


Assuntos
Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Linhagem Celular Tumoral , Estudos Prospectivos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Humanos
3.
Cancers (Basel) ; 14(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36139540

RESUMO

Gastric cancer has a median survival of 11 months, and this poor prognosis has not improved over the last 30 years. Recent pre-clinical data suggest that there is high tumour-related neoantigen expression in gastric cancer cells, suggesting that a clinical strategy that enhances the host's immune system against cancer cells may be a successful approach to improve clinical outcomes. Additionally, there has been an increasing amount of translational evidence highlighting the relevance of PD-L1 expression in gastric cancer cells, indicating that PD-1/PD-L1 inhibitors may be useful. Several molecular subgroups of gastric cancer have been identified to respond with excellent outcomes to immunotherapy, including microsatellite instable tumours, tumours bearing a high tumour mutational burden, and tumours related to a chronic EBV infection. In gastric cancer, immunotherapy has produced durable responses in chemo-refractory patients; however, most recently there has been a lot of enthusiasm as several large-scale clinical trials highlight the improved survival noted from the incorporation of immunotherapy in the first line setting for advanced gastric cancer. Our review aims to discuss current pre-clinical and clinical data supporting the innovative role of immunotherapy in gastric cancer.

4.
Hematol Oncol ; 40(3): 417-429, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35544413

RESUMO

B-cell progenitor fate determinant interferon regulatory factor 4 (IRF4) exerts key roles in the pathogenesis and progression of multiple myeloma (MM), a currently incurable plasma cell malignancy. Aberrant expression of IRF4 and the establishment of a positive auto-regulatory loop with oncogene MYC, drives a MM specific gene-expression program leading to the abnormal expansion of malignant immature plasma cells. Targeting the IRF4-MYC oncogenic loop has the potential to provide a selective and effective therapy for MM. Here we evaluate the use of bromodomain inhibitors to target the IRF4-MYC axis through combined inhibition of their known epigenetic regulators, BRD4 and CBP/EP300. Although all inhibitors induced cell death, we found no synergistic effect of targeting both of these regulators on the viability of MM cell-lines. Importantly, for all inhibitors over a time period up to 72 h, we detected reduced IRF4 mRNA, but a limited decrease in IRF4 protein expression or mRNA levels of downstream target genes. This indicates that inhibitor-induced loss of cell viability is not mediated through reduced IRF4 protein expression, as previously proposed. Further analysis revealed a long half-life of IRF4 protein in MM cells. In support of our experimental observations, gene network modeling of MM suggests that bromodomain inhibition is exerted primarily through MYC and not IRF4. These findings suggest that despite the autofeedback positive regulatory loop between IRF4 and MYC, bromodomain inhibitors are not effective at targeting IRF4 in MM and that novel therapeutic strategies should focus on the direct inhibition or degradation of IRF4.


Assuntos
Fatores Reguladores de Interferon , Mieloma Múltiplo , Proteínas Proto-Oncogênicas c-myc , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/farmacologia , Proteínas de Ciclo Celular/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Mensageiro , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 7): 202-207, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34196610

RESUMO

Pivotal to the regulation of key cellular processes such as the transcription, replication and repair of DNA, DNA-binding proteins play vital roles in all aspects of genetic activity. The determination of high-quality structures of DNA-binding proteins, particularly those in complexes with DNA, provides crucial insights into the understanding of these processes. The presence in such complexes of phosphate-rich oligonucleotides offers the choice of a rapid method for the routine solution of DNA-binding proteins through the use of long-wavelength beamlines such as I23 at Diamond Light Source. This article reports the use of native intrinsic phosphorus and sulfur single-wavelength anomalous dispersion methods to solve the complex of the DNA-binding domain (DBD) of interferon regulatory factor 4 (IRF4) bound to its interferon-stimulated response element (ISRE). The structure unexpectedly shows three molecules of the IRF4 DBD bound to one ISRE. The sole reliance on native intrinsic anomalous scattering elements that belong to DNA-protein complexes renders the method of general applicability to a large number of such protein complexes that cannot be solved by molecular replacement or by other phasing methods.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fatores Reguladores de Interferon/metabolismo , Ácidos Nucleicos/metabolismo , Fósforo/metabolismo , Enxofre/metabolismo , Sítios de Ligação/fisiologia , Cristalografia por Raios X/métodos , Proteínas de Ligação a DNA/química , Humanos , Fatores Reguladores de Interferon/química , Ácidos Nucleicos/química , Fósforo/química , Domínios Proteicos/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Enxofre/química
6.
Pharmaceuticals (Basel) ; 14(2)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530428

RESUMO

The natural alkaloid protopine (PRO) exhibits pharmacological properties including anticancer activity. We investigated the effects of PRO, alone and in combination with the chemotherapeutic gemcitabine (GEM), on human tumor cell lines and non-tumor human dermal fibroblasts (HDFs). We found that treatments with different PRO/GEM combinations were cytotoxic or cytoprotective, depending on concentration and cell type. PRO/GEM decreased viability in pancreatic cancer MIA PaCa-2 and PANC-1 cells, while it rescued the GEM-induced viability decline in HDFs and in tumor MCF-7 cells. Moreover, PRO/GEM decreased G1, S and G2/M phases, concomitantly with an increase of subG1 phase in MIA PaCa-2 and PANC-1 cells. Differently, PRO/GEM restored the normal progression of the cell cycle, altered by GEM, and decreased cell death in HDFs. PRO alone increased mitochondrial reactive oxygen species (ROS) in MIA PaCa-2, PANC-1 cells and HDFs, while PRO/GEM increased both intracellular and mitochondrial ROS in the three cell lines. These results indicate that specific combinations of PRO/GEM may be used to induce cytotoxic effects in pancreatic tumor MIA PaCa-2 and PANC-1 cells, but have cytoprotective or no effects in HDFs.

7.
Leuk Res ; 72: 52-58, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30098518

RESUMO

Multiple Myeloma (MM) is an incurable hematologic malignancy characterized by abnormal proliferation of plasma cells. Interferon Regulatory Factor 4 (IRF4), a member of the interferon regulatory family of transcription factors, is central to the genesis of MM. IRF4 is highly expressed in B cells and plasma cells where it plays essential roles in controlling B cell to plasma cell differentiation and immunoglobulin class switching. Overexpression of IRF4 is found in MM patients' derived cells, often as a result of activating mutations or translocations, where it is required for their survival. In this review, we first describe the roles of IRF4 in B cells and plasma cells and then analyse the subversion of the IRF4 transcriptional network in MM. Moreover, we discuss current therapies for MM as well as direct targeting of IRF4 as a potential new therapeutic strategy.


Assuntos
Regulação Neoplásica da Expressão Gênica , Fatores Reguladores de Interferon/metabolismo , Mieloma Múltiplo , Proteínas de Neoplasias/metabolismo , Plasmócitos/metabolismo , Animais , Intervalo Livre de Doença , Humanos , Fatores Reguladores de Interferon/genética , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/mortalidade , Mieloma Múltiplo/patologia , Proteínas de Neoplasias/genética , Plasmócitos/patologia , Taxa de Sobrevida
8.
Sci Rep ; 8(1): 10599, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30006630

RESUMO

The natural alkaloid berberine has several pharmacological properties and recently received attention as a potential anticancer agent. In this work, we investigated the molecular mechanisms underlying the anti-tumor effect of berberine on glioblastoma U343 and pancreatic carcinoma MIA PaCa-2 cells. Human dermal fibroblasts (HDF) were used as non-cancer cells. We show that berberine differentially affects cell viability, displaying a higher cytotoxicity on the two cancer cell lines than on HDF. Berberine also affects cell cycle progression, senescence, caspase-3 activity, autophagy and migration in a cell-specific manner. In particular, in HDF it induces cell cycle arrest in G2 and senescence, but not autophagy; in the U343 cells, berberine leads to cell cycle arrest in G2 and induces both senescence and autophagy; in MIA PaCa-2 cells, the alkaloid induces arrest in G1, senescence, autophagy, it increases caspase-3 activity and impairs migration/invasion. As demonstrated by decreased citrate synthase activity, the three cell lines show mitochondrial dysfunction following berberine exposure. Finally, we observed that berberine modulates the expression profile of genes involved in different pathways of tumorigenesis in a cell line-specific manner. These findings have valuable implications for understanding the complex functional interactions between berberine and specific cell types.


Assuntos
Berberina/farmacologia , Carcinogênese/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Berberina/uso terapêutico , Carcinogênese/patologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Citrato (si)-Sintase/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Fibroblastos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...