Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 230(2): 550-566, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33454983

RESUMO

The plant hormone auxin and its directional intercellular transport play a major role in diverse aspects of plant growth and development. The establishment of auxin gradients requires the asymmetric distribution of members of the auxin efflux carrier PIN-FORMED (PIN) protein family to the plasma membrane. An endocytic pathway regulates the recycling of PIN proteins between the plasma membrane and endosomes, providing a mechanism for dynamic localisation. N-Ethylmaleimide-sensitive factor adaptor protein receptors (SNAP receptors, SNAREs) mediate fusion between vesicles and target membranes and are classed as Q- or R-SNAREs based on their sequence. We analysed gain- and loss-of-function mutants, dominant-negative transgenics and localisation of the Arabidopsis R-SNARE VAMP714 protein to understand its function. We demonstrate that VAMP714 is essential for the insertion of PINs into the plasma membrane, for polar auxin transport, root gravitropism and morphogenesis. VAMP714 gene expression is upregulated by auxin, and the VAMP714 protein co-localises with endoplasmic reticulum and Golgi vesicles and with PIN proteins at the plasma membrane. It is proposed that VAMP714 mediates the delivery of PIN-carrying vesicles to the plasma membrane, and that this forms part of a positive regulatory loop in which auxin activates a VAMP714-dependent PIN/auxin transport system to control development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Ácidos Indolacéticos , Raízes de Plantas/metabolismo , Proteínas SNARE
2.
Mech Ageing Dev ; 180: 63-69, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30954485

RESUMO

There is an unmet need to develop and validate therapies that can treat or at least prevent premature therapy-induced frailty, multi-morbidity and mortality in long-term tumour survivors. In an approach to develop a first mouse model for therapy-induced long-term frailty, we irradiated male C57Bl/6 mice at 5-6 months of age sub-lethally with 3 × 3 Gy (whole body) and assessed subsequent frailty for up to 6 months using a Rockwood-type frailty index (FI). Frailty scorers were trained to obtain excellent inter- and intra-observer reproducibility. Irradiated mice developed progressive frailty approximately twice as fast as controls. This was premature frailty; it was phenotypically identical to that in non-irradiated mice at higher age. As expected, frailty was associated with decreased cognition and predicted mortality. In irradiated mice, frailty and neuromuscular performance, measured by Rotarod and Hanging Wire tests, were not associated with each other, probably because of long-term decreased body weights after irradiation. We conclude that progressive frailty following sub-lethal irradiation comprises a sensitive and easy to use test bed for interventions to stop premature ageing in long-term tumour survivors.


Assuntos
Senilidade Prematura/fisiopatologia , Fragilidade/fisiopatologia , Irradiação Corporal Total/efeitos adversos , Animais , Modelos Animais de Doenças , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA