Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 10: 1058620, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36605121

RESUMO

In-depth and reliable characterization of advanced nanoparticles is crucial for revealing the origin of their unique features and for designing novel functional materials with tailored properties. Due to their small size, characterization beyond nanometric resolution, notably, by transmission electron microscopy (TEM) and associated techniques, is essential to provide meaningful information. Nevertheless, nanoparticles, especially those containing volatile elements or organic components, are sensitive to radiation damage. Here, using CsPbBr3 perovskite nanocrystals as an example, strategies to preserve the native structure of radiation-sensitive nanocrystals in high-resolution electron microscopy studies are presented. Atomic-resolution images obtained using graphene support films allow for a clear comparison with simulation results, showing that most CsPbBr3 nanocrystals are orthorhombic. Low-dose TEM reveals faceted nanocrystals with no in situ formed Pb crystallites, a feature observed in previous TEM studies that has been attributed to radiation damage. Cryo-electron microscopy further delays observable effects of radiation damage. Powder electron diffraction with a hybrid pixel direct electron detector confirms the domination of orthorhombic crystals. These results emphasize the importance of optimizing TEM grid preparation and of exploiting data collection strategies that impart minimum electron dose for revealing the true structure of radiation-sensitive nanocrystals.

2.
J Am Chem Soc ; 139(44): 15748-15759, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-28994294

RESUMO

Ternary metal chalcogenide nanocrystals (NCs) offer exciting opportunities as novel materials to be explored on the nanoscale showing optoelectronic properties tunable with size and composition. CuInS2 (CIS) NCs are the most widely studied representatives of this family as they can be easily prepared with good size control and in high yield by reacting the metal precursors (copper iodide and indium acetate) in dodecanethiol (DDT). Despite the widespread use of this synthesis method, both the reaction mechanism and the surface state of the obtained NCs remain elusive. Here, we perform in situ X-ray diffraction using synchrotron radiation to monitor the pre- and postnucleation stages of the formation of CIS NCs. SAXS measurements show that the reaction intermediate formed at 100 °C presents a periodic lamellar structure with a characteristic spacing of 34.9 Å. WAXS measurements performed after nucleation of the CIS NCs at 230 °C demonstrate that their growth kinetics depend on the degree of precursor conversion achieved in the initial stage at 100 °C. NC formation requires the cleavage of S-C bonds. We reveal by means of combined 1D and 2D proton and carbon NMR analyses that the generated dodecyl radicals lead to the formation of a new thioether species R-S-R. The latter is part of a ligand double layer, which consists of dynamically bound dodecanethiolate ligands as well as of head-to-tail bound R-S-R molecules. This ligand double layer and a high ligand density (3.6 DDT molecules per nm2) are at the origin of the apparent difficulty to functionalize the surface of CIS NCs obtained with the DDT method.

3.
Nanoscale ; 8(21): 11275-83, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27188210

RESUMO

A novel two-step approach for quantum dot (QD) functionalization and bioconjugation is presented, which yields ultra-compact, stable, and highly luminescent antibody-QD conjugates suitable for use in FRET immunoassays. Hydrophobic InPZnS/ZnSe/ZnS (emission wavelength: 530 nm), CdSe/ZnS (605 nm), and CdSeTe/ZnS (705 nm) QDs were surface functionalized with zwitterionic penicillamine, enabling aqueous phase transfer under conservation of the photoluminescence properties. Post-functionalization with a heterobifunctional crosslinker, containing a lipoic acid group and a maleimide function, enabled the subsequent coupling to sulfhydryl groups of proteins. This was demonstrated by QD conjugation with fragmented antibodies (F(ab)). The obtained F(ab)-QD conjugates range among the smallest antibody-functionalized nanoprobes ever reported, with a hydrodynamic diameter <13 nm, PL quantum yield up to 66% at 705 nm, and colloidal stability of several months in various buffers. They were applied as FRET acceptors in homogeneous, time-gated immunoassays using Tb-antibodies as FRET donors, both coupled by an immunological sandwich complex between the two antibodies and a PSA (prostate specific antigen) biomarker. The advantages of the compact surface coating for FRET could be demonstrated by an 6.2 and 2.5 fold improvement of the limit of detection (LOD) for PSA compared to commercially available hydrophilic QDs emitting at 605 and 705 nm, respectively. While the commercial QDs contain identical inorganic cores responsible for their fluorescence, they are coated with a comparably thick amphiphilic polymer layer leading to much larger hydrodynamic diameters (>26 nm without biomolecules). The LODs of 0.8 and 3.7 ng mL(-1) obtained in 50 µL serum samples are below the clinical cut-off level of PSA (4 ng mL(-1)) and demonstrate their direct applicability in clinical diagnostics.


Assuntos
Anticorpos/química , Transferência Ressonante de Energia de Fluorescência , Imunoensaio , Imunoconjugados/química , Pontos Quânticos , Humanos , Limite de Detecção , Masculino , Antígeno Prostático Específico/imunologia
4.
Chem Commun (Camb) ; 52(24): 4577-80, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-26941180

RESUMO

The synthesis of stable hybrid nanoparticles combining InPZnS@ZnSe/ZnS quantum dots (QDs) and grafted lanthanide complexes has been performed using two different approaches in organic and aqueous media. The final bi-luminescent hybrids exhibit Ln(III) (Ln = Eu and Yb) centred luminescence upon QD excitation, suggesting that an energy transfer occurs from the QD to the lanthanide.


Assuntos
Elementos da Série dos Lantanídeos/química , Nanopartículas Metálicas , Pontos Quânticos , Espectroscopia de Luz Próxima ao Infravermelho , Luminescência , Microscopia Eletrônica de Transmissão
5.
Chem Commun (Camb) ; 51(65): 12985-8, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26176023

RESUMO

A novel synthesis method for the preparation of Cu2ZnSnS4 nanocrystals is presented using a liquid precursor of tin, namely tin(II) 2-ethylhexanoate, which yields small and nearly monodisperse NCs either in the kesterite or in the wurtzite phase depending on the sulfur source (elemental sulfur in oleylamine vs. dodecanethiol).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...