Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 5: 7761, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25585693

RESUMO

The phenomenon of resistive switching (RS), which was initially linked to non-volatile resistive memory applications, has recently also been associated with the concept of memristors, whose adjustable multilevel resistance characteristics open up unforeseen perspectives in cognitive computing. Herein, we demonstrate that the resistance states of Li(x)CoO2 thin film-based metal-insulator-metal (MIM) solid-state cells can be tuned by sequential programming voltage pulses, and that these resistance states are dramatically dependent on the pulses input rate, hence emulating biological synapse plasticity. In addition, we identify the underlying electrochemical processes of RS in our MIM cells, which also reveal a nanobattery-like behavior, leading to the generation of electrical signals that bring an unprecedented new dimension to the connection between memristors and neuromorphic systems. Therefore, these LixCoO2-based MIM devices allow for a combination of possibilities, offering new perspectives of usage in nanoelectronics and bio-inspired neuromorphic circuits.

2.
Nanotechnology ; 21(17): 175202, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20368686

RESUMO

Nanoscale devices such as carbon nanotube and nanowires based transistors, memristors and molecular devices are expected to play an important role in the development of new computing architectures. While their size represents a decisive advantage in terms of integration density, it also raises the critical question of how to efficiently address large numbers of densely integrated nanodevices without the need for complex multi-layer interconnection topologies similar to those used in CMOS technology. Two-terminal programmable devices in crossbar geometry seem particularly attractive, but suffer from severe addressing difficulties due to cross-talk, which implies complex programming procedures. Three-terminal devices can be easily addressed individually, but with limited gain in terms of interconnect integration. We show how optically gated carbon nanotube devices enable efficient individual addressing when arranged in a crossbar geometry with shared gate electrodes. This topology is particularly well suited for parallel programming or learning in the context of neuromorphic computing architectures.


Assuntos
Bioengenharia , Sistemas Microeletromecânicos , Nanoestruturas , Modelos Neurológicos , Nanotecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...