Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Mol Biotechnol ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095823

RESUMO

Major countries like the USA, European Union, UK, Japan, Canada, Australia, Singapore, and China have taken significant initiatives to develop quantum computation infrastructure. India has also taken several steps to join the quantum computation family. The Indian government has taken several initiatives to build the nation's infrastructure on quantum computation and participate in the global quantum landscape. The Indian government has created a roadmap in this direction. The significant steps are: firstly, noteworthy budget allocation (1.12 billion USD in 2020 and 734 million USD for the National Quantum Mission in 2023); secondly, 21 quantum hubs are being developed throughout the country; thirdly, 4 quantum research parks have been created and finally, Department of Science and Technology (DST) has initiated QuEST (Quantum Enabled Science and Technology) programme during 2017-18. The article also discusses other effective strategies and moves by the Indian government, like different ambitious national missions on quantum science and technology to create the country's ecosystem. In that direction, the article addresses the opportunities and challenges of quantum science and technology for India. However, the Indian government should encourage quantum computation research more for the country's development. Finally, the information provided here depicts an overall view of India's quantum computation landscape.

2.
Mol Biotechnol ; 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798393

RESUMO

Monkeypox virus (mpox) has currently affected multiple countries around the globe. This study aims to analyze how the virus spread globally. The study uses entropy-driven bioinformatics in five directions to analyze the 60 full-length complete genomes of mpox. We analyzed the topological entropy distribution of the genomes, principal component analysis (PCA), the dissimilarity matrix, entropy-driven phylogenetics, and genome clustering. The topological entropy distribution showed genome positional entropy. We found five clusters of the mpox genomes through the two PCA, while the three PCA elucidated the clustering events in 3D space. The clustering of genomes was further confirmed through the dissimilarity matrix and phylogenetic analysis which showed the bigger size of Cluster 1 and size similarity between Clusters 2 and 4 as well as Clusters 3 and 5. It corroborated with the phylogenetics of the genomes, where Cluster 1 showed clear segregation from the other four clusters. Finally, the study concluded that the spreading of the mpox is likely to have originated from African countries to the rest of the non-African countries. Overall, the spreading and distribution of the mpox will shed light on its evolution and pathogenicity of the mpox and help to adopt preventive measures to stop the spreading of the virus.

5.
Sci Rep ; 13(1): 16361, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773347

RESUMO

This paper presents new data on the salt tolerance and avoidance mechanisms among various groups of halophytes in India. The halophytic flora in general has positive effect of high saline environments on growth and physiology. The coastal area of the Kachchh district in Gujarat includes about 350 km of shoreline along the Gulf of Kachchh. This study presents data on the elemental accumulation mechanisms in soil and halophytic flora (succulent and non-succulents). The halophytes were divided into two groups namely succulent with thick and fleshy leaves and stems as well as non-succulents with thin leaves and stem. The succulent halophytes included species such as Salicornia brachiata, Suaeda fruticosa and Suaeda nudiflora. The non-succulent halophytes include Aeluropus lagopoides and Urochondra setulosa. Plant parts namely leaves (Phylloclade for Salicornia), stems and roots were analyzed during the monsoon season. The results of soil and plant mineral ion contents differed widely across the intertidal zones in the same habitat. Likewise, the intra species have varied in all nutrient levels and salt concentration. The accumulation of elemental concentration was high during the monsoon season in the succulent Salicornia brachiata, especially in leaves that showed Na+ reaching high up to 7.6 meq g-1, whereas Cl- was noted to be 4.34 meq g-1. In the non-succulent halophytes, the accumulation of mineral ion concentration was lower when compared to succulent plants.


Assuntos
Chenopodiaceae , Plantas Tolerantes a Sal , Plantas Tolerantes a Sal/fisiologia , Ecossistema , Solo , Minerais
10.
Mol Biotechnol ; 2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36463562

RESUMO

SARS-CoV-2 has a single-stranded RNA genome (+ssRNA), and synthesizes structural and non-structural proteins (nsps). All 16 nsp are synthesized from the ORF1a, and ORF1b regions associated with different life cycle preprocesses, including replication. The regions of ORF1a synthesizes nsp1 to 11, and ORF1b synthesizes nsp12 to 16. In this paper, we have predicted the secondary structure conformations, entropy & mountain plots, RNA secondary structure in a linear fashion, and 3D structure of nsp coding genes of the SARS-CoV-2 genome. We have also analyzed the A, T, G, C, A+T, and G+C contents, GC-profiling of these genes, showing the range of the GC content from 34.23 to 48.52%. We have observed that the GC-profile value of the nsp coding genomic regions was less (about 0.375) compared to the whole genome (about 0.38). Additionally, druggable pockets were identified from the secondary structure-guided 3D structural conformations. For secondary structure generation of all the nsp coding genes (nsp 1-16), we used a recent algorithm-based tool (deep learning-based) along with the conventional algorithms (centroid and MFE-based) to develop secondary structural conformations, and we found stem-loop, multi-branch loop, pseudoknot, and the bulge structural components, etc. The 3D model shows bound and unbound forms, branched structures, duplex structures, three-way junctions, four-way junctions, etc. Finally, we identified binding pockets of nsp coding genes which will help as a fundamental resource for future researchers to develop RNA-targeted therapeutics using the druggable genome.

12.
Geroscience ; 44(5): 2393-2425, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35989365

RESUMO

The Omicron variant is spreading rapidly throughout several countries. Thus, we comprehensively analyzed Omicron's mutational landscape and compared mutations with VOC/VOI. We analyzed SNVs throughout the genome, and AA variants (NSP and SP) in VOC/VOI, including Omicron. We generated heat maps to illustrate the AA variants with high mutation prevalence (> 75% frequency) of Omicron, which demonstrated eight mutations with > 90% prevalence in ORF1a and 29 mutations with > 75% prevalence in S-glycoprotein. A scatter plot for Omicron and VOC/VOI's cluster evaluation was computed. We performed a risk analysis of the antibody-binding risk among four mutations (L452, F490, P681, D614) and observed three mutations (L452R, F490S, D614G) destabilized antibody interactions. Our comparative study evaluated the properties of 28 emerging mutations of the S-glycoprotein of Omicron, and the ΔΔG values. Our results showed K417N with minimum and Q954H with maximum ΔΔG value. Furthermore, six important RBD mutations (G339D, S371L, N440K, G446S, T478K, Q498R) were chosen for comprehensive analysis for stabilizing/destabilizing properties and molecular flexibility. The G339D, S371L, N440K, and T478K were noted as stable mutations with 0.019 kcal/mol, 0.127 kcal/mol, 0.064 kcal/mol, and 1.009 kcal/mol. While, G446S and Q498R mutations showed destabilizing results. Simultaneously, among six RBD mutations, G339D, G446S, and Q498R mutations increased the molecular flexibility of S-glycoprotein. This study depicts the comparative mutational pattern of Omicron and other VOC/VOI, which will help researchers to design and deploy novel vaccines and therapeutic antibodies to fight against VOC/VOI, including Omicron.


Assuntos
Mutação , SARS-CoV-2 , SARS-CoV-2/genética , Genoma Viral
13.
Aging Dis ; 13(3): 927-942, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35656100

RESUMO

Since September 2020, the SARS-CoV-2 variants have gained their dominance worldwide, especially in Kenya, Italy, France, the UK, Turkey, Indonesia, India, Finland, Ireland, Singapore, Denmark, Germany, and Portugal. In this study, we developed a model on the frequency of delta variants across 28 countries (R2= 0.1497), displaying the inheritance of mutations during the generation of the delta variants with 123,526 haplotypes. The country-wise haplotype network showed the distribution of haplotypes in USA (10,174), Denmark (5,637), India (4,089), Germany (2,350), Netherlands (1,899), Sweden (1,791), Italy (1,720), France (1,293), Ireland (1,257), Belgium (1,207), Singapore (1,193), Portugal (1,184) and Spain (1,133). Our analysis shows the highest haplotype in Europe with 84% and the lowest in Australia with 0.00001%. A model of scatter plot was generated with a regression line which provided the estimated rate of mutation, including 24.048 substitutions yearly. Our study concluded that the high global prevalence of the delta variants is due to a high frequency of infectivity, supporting the paradigm shift of the viral variants.

15.
Int Immunopharmacol ; 108: 108766, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35413676

RESUMO

Hybrid immunity has been accepted as the most robust immunity to fight against SARS-CoV-2. The hybrid immunity against the virus is produced in individuals who have contracted the disease and received the COVID-19 vaccine. This happens due to the cumulative effect of natural and acquired (vaccine) immunity, which provides higher antibody responses compared to natural and vaccine-produced immunity alone. Scientists have noted that it provides about 25 to 100 times higher antibody responses than natural and vaccine-produced immunity alone. Here, we have tried to illustrate the molecular basis of hybrid immunity against various SARS-CoV-2 variants. We have described hybrid immunity under different headings, which are as follows: an overview of hybrid immunity; a comparison between herd immunity and hybrid immunity against SARS-CoV-2; hybrid immunity in different countries; hybrid immunity and different SARS-CoV-2 variants; the molecular basis of hybrid immunity; and hybrid immunity in Indian scenario. India's large population has recovered from SARS-CoV-2, and data shows that over 1000 million of the population received at least one dose of the vaccine. Besides, many infected individuals who have recovered also received at least one dose of the vaccine leading to hybrid immunity with a less severe third wave compared to the first and second waves. Based on the available data, we hypothesize that people's hybrid immunity could be a major cause of the less severe third wave.


Assuntos
COVID-19 , Vacinas Virais , Vacinas contra COVID-19 , Humanos , SARS-CoV-2
16.
Geroscience ; 44(2): 619-637, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35258772

RESUMO

The Omicron variant has been detected in nearly 150 countries. We analyzed the mutational landscape of Omicron throughout the genome, focusing the S-glycoprotein. We also evaluated mutations in the antibody-binding regions and observed some important mutations overlapping those of previous variants including N501Y, D614G, H655Y, N679K, and P681H. Various new receptor-binding domain mutations were detected, including Q493K, G496S, Q498R, S477N, G466S, N440K, and Y505H. New mutations were found in the NTD (Δ143-145, A67V, T95I, L212I, and Δ211) including one new mutation in fusion peptide (D796Y). There are several mutations in the antibody-binding region including K417N, E484A, Q493K, Q498R, N501Y, and Y505H and several near the antibody-binding region (S477N, T478K, G496S, G446S, and N440K). The impact of mutations in regions important for the affinity between spike proteins and neutralizing antibodies was evaluated. Furthermore, we examined the effect of significant antibody-binding mutations (K417N, T478K, E484A, and N501Y) on antibody affinity, stability to ACE2 interaction, and possibility of amino acid substitution. All the four mutations destabilize the antibody-binding affinity. This study reveals future directions for developing neutralizing antibodies against the Omicron variant.


Assuntos
COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Anticorpos Neutralizantes/genética , COVID-19/genética , Glicoproteínas/genética , Humanos , Mutação/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
20.
Vaccines (Basel) ; 11(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36679883

RESUMO

Pattern recognition plays a critical role in integrative bioinformatics to determine the structural patterns of proteins of viruses such as SARS-CoV-2. This study identifies the pattern of SARS-CoV-2 proteins to depict the structure-function relationships of the protein alphabets of SARS-CoV-2 and COVID-19. The assembly enumeration algorithm, Anisotropic Network Model, Gaussian Network Model, Markovian Stochastic Model, and image comparison protein-like alphabets were used. The distance score was the lowest with 22 for "I" and highest with 40 for "9". For post-processing and decision, two protein alphabets "C" (PDB ID: 6XC3) and "S" (PDB ID: 7OYG) were evaluated to understand the structural, functional, and evolutionary relationships, and we found uniqueness in the functionality of proteins. Here, models were constructed using "SARS-CoV-2 proteins" (12 numbers) and "non-SARS-CoV-2 proteins" (14 numbers) to create two words, "SARS-CoV-2" and "COVID-19". Similarly, we developed two slogans: "Vaccinate the world against COVID-19" and "Say no to SARS-CoV-2", which were made with the proteins structure. It might generate vaccine-related interest to broad reader categories. Finally, the evolutionary process appears to enhance the protein structure smoothly to provide suitable functionality shaped by natural selection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...