Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 900: 166379, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37595912

RESUMO

Ocean warming drives not only the increase of known coral disease prevalence but facilitates the emergence of new undescribed ones too. As climate change is restructuring coral ecosystems, novel biological interactions could lead to an increase in coral disease in both tropical and marginal coral communities. White Mat Syndrome (WMS) represents one such emerging coral disease, with outbreaks associated with high algal interactions and seasonal summer temperatures. However, the mechanisms behind its pathogenesis, modes of transmission and causative pathogens remain to be identified. Ex situ infection experiments pairing the coral Porites heronensis together with local potential contributory factors show that the macroalga Gelidium elegans hosts and proliferates the WMS microbial mat. This pathogenic consortium then infects adjacent corals, leading to their mortality. WMS was also observed to transmit following the fragmentation of the microbial mat, which was able to infect healthy corals. Sulfur-cycling bacteria (i.e., Beggiatoa, Desulfobacter sp., Arcobacteraceae species) and the free-living spirochete Oceanospirochaeta sediminicola were found consistently in both WMS and G. elegans consortia, suggesting they are putative pathogens of WMS. The predicted functional roles of these pathogenic consortia showed degradative processes, hinting that tissue lyses could drive mat formation and spread. Coral-algae interactions will rise due to ongoing ocean warming and coral ecosystem degradation, likely promoting the virulence and prevalence of algal-driven coral diseases.


Assuntos
Antozoários , Ecossistema , Animais , Estações do Ano , Surtos de Doenças , Ciclismo
2.
Sci Rep ; 13(1): 11589, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463961

RESUMO

With climate projections questioning the future survival of stony corals and their dominance as tropical reef builders, it is critical to understand the adaptive capacity of corals to ongoing climate change. Biological mediation of the carbonate chemistry of the coral calcifying fluid is a fundamental component for assessing the response of corals to global threats. The Tara Pacific expedition (2016-2018) provided an opportunity to investigate calcification patterns in extant corals throughout the Pacific Ocean. Cores from colonies of the massive Porites and Diploastrea genera were collected from different environments to assess calcification parameters of long-lived reef-building corals. At the basin scale of the Pacific Ocean, we show that both genera systematically up-regulate their calcifying fluid pH and dissolved inorganic carbon to achieve efficient skeletal precipitation. However, while Porites corals increase the aragonite saturation state of the calcifying fluid (Ωcf) at higher temperatures to enhance their calcification capacity, Diploastrea show a steady homeostatic Ωcf across the Pacific temperature gradient. Thus, the extent to which Diploastrea responds to ocean warming and/or acidification is unclear, and it deserves further attention whether this is beneficial or detrimental to future survival of this coral genus.


Assuntos
Antozoários , Calcinose , Animais , Antozoários/fisiologia , Recifes de Corais , Regulação para Cima , Concentração de Íons de Hidrogênio , Carbonatos/metabolismo , Carbonato de Cálcio/metabolismo , Calcificação Fisiológica/fisiologia , Água do Mar
3.
Nat Commun ; 14(1): 3038, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37263999

RESUMO

Telomeres are environment-sensitive regulators of health and aging. Here,we present telomere DNA length analysis of two reef-building coral genera revealing that the long- and short-term water thermal regime is a key driver of between-colony variation across the Pacific Ocean. Notably, there are differences between the two studied genera. The telomere DNA lengths of the short-lived, more stress-sensitive Pocillopora spp. colonies were largely determined by seasonal temperature variation, whereas those of the long-lived, more stress-resistant Porites spp. colonies were insensitive to seasonal patterns, but rather influenced by past thermal anomalies. These results reveal marked differences in telomere DNA length regulation between two evolutionary distant coral genera exhibiting specific life-history traits. We propose that environmentally regulated mechanisms of telomere maintenance are linked to organismal performances, a matter of paramount importance considering the effects of climate change on health.


Assuntos
Antozoários , Animais , Antozoários/genética , Recifes de Corais , Temperatura , Estações do Ano , DNA/genética
4.
Nat Commun ; 14(1): 3039, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264002

RESUMO

Coral reefs are among the most diverse ecosystems on Earth. They support high biodiversity of multicellular organisms that strongly rely on associated microorganisms for health and nutrition. However, the extent of the coral reef microbiome diversity and its distribution at the oceanic basin-scale remains to be explored. Here, we systematically sampled 3 coral morphotypes, 2 fish species, and planktonic communities in 99 reefs from 32 islands across the Pacific Ocean, to assess reef microbiome composition and biogeography. We show a very large richness of reef microorganisms compared to other environments, which extrapolated to all fishes and corals of the Pacific, approximates the current estimated total prokaryotic diversity for the entire Earth. Microbial communities vary among and within the 3 animal biomes (coral, fish, plankton), and geographically. For corals, the cross-ocean patterns of diversity are different from those known for other multicellular organisms. Within each coral morphotype, community composition is always determined by geographic distance first, both at the island and across ocean scale, and then by environment. Our unprecedented sampling effort of coral reef microbiomes, as part of the Tara Pacific expedition, provides new insight into the global microbial diversity, the factors driving their distribution, and the biocomplexity of reef ecosystems.


Assuntos
Antozoários , Microbiota , Animais , Recifes de Corais , Oceano Pacífico , Biodiversidade , Peixes , Plâncton
5.
Nat Commun ; 14(1): 3037, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264015

RESUMO

Health and resilience of the coral holobiont depend on diverse bacterial communities often dominated by key marine symbionts of the Endozoicomonadaceae family. The factors controlling their distribution and their functional diversity remain, however, poorly known. Here, we study the ecology of Endozoicomonadaceae at an ocean basin-scale by sampling specimens from three coral genera (Pocillopora, Porites, Millepora) on 99 reefs from 32 islands across the Pacific Ocean. The analysis of 2447 metabarcoding and 270 metagenomic samples reveals that each coral genus harbored a distinct new species of Endozoicomonadaceae. These species are composed of nine lineages that have distinct biogeographic patterns. The most common one, found in Pocillopora, appears to be a globally distributed symbiont with distinct metabolic capabilities, including the synthesis of amino acids and vitamins not produced by the host. The other lineages are structured partly by the host genetic lineage in Pocillopora and mainly by the geographic location in Porites. Millepora is more rarely associated to Endozoicomonadaceae. Our results show that different coral genera exhibit distinct strategies of host-Endozoicomonadaceae associations that are defined at the bacteria lineage level.


Assuntos
Antozoários , Gammaproteobacteria , Animais , Antozoários/microbiologia , Oceano Pacífico , Ecologia , Bactérias , Recifes de Corais
6.
Sci Data ; 10(1): 324, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264023

RESUMO

The Tara Pacific expedition (2016-2018) sampled coral ecosystems around 32 islands in the Pacific Ocean and the ocean surface waters at 249 locations, resulting in the collection of nearly 58 000 samples. The expedition was designed to systematically study warm-water coral reefs and included the collection of corals, fish, plankton, and seawater samples for advanced biogeochemical, molecular, and imaging analysis. Here we provide a complete description of the sampling methodology, and we explain how to explore and access the different datasets generated by the expedition. Environmental context data were obtained from taxonomic registries, gazetteers, almanacs, climatologies, operational biogeochemical models, and satellite observations. The quality of the different environmental measures has been validated not only by various quality control steps, but also through a global analysis allowing the comparison with known environmental large-scale structures. Such publicly released datasets open the perspective to address a wide range of scientific questions.


Assuntos
Antozoários , Recifes de Corais , Animais , Ecossistema , Oceano Pacífico , Água do Mar
7.
Nat Commun ; 14(1): 3056, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264036

RESUMO

Heat waves are causing declines in coral reefs globally. Coral thermal responses depend on multiple, interacting drivers, such as past thermal exposure, endosymbiont community composition, and host genotype. This makes the understanding of their relative roles in adaptive and/or plastic responses crucial for anticipating impacts of future warming. Here, we extracted DNA and RNA from 102 Pocillopora colonies collected from 32 sites on 11 islands across the Pacific Ocean to characterize host-photosymbiont fidelity and to investigate patterns of gene expression across a historical thermal gradient. We report high host-photosymbiont fidelity and show that coral and microalgal gene expression respond to different drivers. Differences in photosymbiotic association had only weak impacts on host gene expression, which was more strongly correlated with the historical thermal environment, whereas, photosymbiont gene expression was largely determined by microalgal lineage. Overall, our results reveal a three-tiered strategy of thermal acclimatization in Pocillopora underpinned by host-photosymbiont specificity, host transcriptomic plasticity, and differential photosymbiotic association under extreme warming.


Assuntos
Antozoários , Transcriptoma , Animais , Oceano Pacífico , Transcriptoma/genética , Antozoários/genética , Aclimatação/genética , Recifes de Corais
8.
Sci Data ; 10(1): 326, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264047

RESUMO

Coral reef science is a fast-growing field propelled by the need to better understand coral health and resilience to devise strategies to slow reef loss resulting from environmental stresses. Key to coral resilience are the symbiotic interactions established within a complex holobiont, i.e. the multipartite assemblages comprising the coral host organism, endosymbiotic dinoflagellates, bacteria, archaea, fungi, and viruses. Tara Pacific is an ambitious project built upon the experience of previous Tara Oceans expeditions, and leveraging state-of-the-art sequencing technologies and analyses to dissect the biodiversity and biocomplexity of the coral holobiont screened across most archipelagos spread throughout the entire Pacific Ocean. Here we detail the Tara Pacific workflow for multi-omics data generation, from sample handling to nucleotide sequence data generation and deposition. This unique multidimensional framework also includes a large amount of concomitant metadata collected side-by-side that provide new assessments of coral reef biodiversity including micro-biodiversity and shape future investigations of coral reef dynamics and their fate in the Anthropocene.


Assuntos
Antozoários , Recifes de Corais , Animais , Biodiversidade , Ecossistema
9.
Commun Biol ; 6(1): 566, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264063

RESUMO

Endogenous viral elements (EVEs) offer insight into the evolutionary histories and hosts of contemporary viruses. This study leveraged DNA metagenomics and genomics to detect and infer the host of a non-retroviral dinoflagellate-infecting +ssRNA virus (dinoRNAV) common in coral reefs. As part of the Tara Pacific Expedition, this study surveyed 269 newly sequenced cnidarians and their resident symbiotic dinoflagellates (Symbiodiniaceae), associated metabarcodes, and publicly available metagenomes, revealing 178 dinoRNAV EVEs, predominantly among hydrocoral-dinoflagellate metagenomes. Putative associations between Symbiodiniaceae and dinoRNAV EVEs were corroborated by the characterization of dinoRNAV-like sequences in 17 of 18 scaffold-scale and one chromosome-scale dinoflagellate genome assembly, flanked by characteristically cellular sequences and in proximity to retroelements, suggesting potential mechanisms of integration. EVEs were not detected in dinoflagellate-free (aposymbiotic) cnidarian genome assemblies, including stony corals, hydrocorals, jellyfish, or seawater. The pervasive nature of dinoRNAV EVEs within dinoflagellate genomes (especially Symbiodinium), as well as their inconsistent within-genome distribution and fragmented nature, suggest ancestral or recurrent integration of this virus with variable conservation. Broadly, these findings illustrate how +ssRNA viruses may obscure their genomes as members of nested symbioses, with implications for host evolution, exaptation, and immunity in the context of reef health and disease.


Assuntos
Antozoários , Dinoflagellida , Vírus de RNA , Animais , Dinoflagellida/genética , Genoma , Antozoários/genética , Vírus de RNA/genética , Recifes de Corais
10.
Genome Biol ; 24(1): 123, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264421

RESUMO

BACKGROUND: Over the last decade, several coral genomes have been sequenced allowing a better understanding of these symbiotic organisms threatened by climate change. Scleractinian corals are reef builders and are central to coral reef ecosystems, providing habitat to a great diversity of species. RESULTS: In the frame of the Tara Pacific expedition, we assemble two coral genomes, Porites lobata and Pocillopora cf. effusa, with vastly improved contiguity that allows us to study the functional organization of these genomes. We annotate their gene catalog and report a relatively higher gene number than that found in other public coral genome sequences, 43,000 and 32,000 genes, respectively. This finding is explained by a high number of tandemly duplicated genes, accounting for almost a third of the predicted genes. We show that these duplicated genes originate from multiple and distinct duplication events throughout the coral lineage. They contribute to the amplification of gene families, mostly related to the immune system and disease resistance, which we suggest to be functionally linked to coral host resilience. CONCLUSIONS: At large, we show the importance of duplicated genes to inform the biology of reef-building corals and provide novel avenues to understand and screen for differences in stress resilience.


Assuntos
Antozoários , Animais , Antozoários/genética , Ecossistema , Recifes de Corais
11.
Sci Total Environ ; 873: 162293, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36813205

RESUMO

Ocean acidification can severely affect bivalve molluscs, especially their shell calcification. Assessing the fate of this vulnerable group in a rapidly acidifying ocean is therefore a pressing challenge. Volcanic CO2 seeps are natural analogues of future ocean conditions that offer unique insights into the scope of marine bivalves to cope with acidification. Here, we used a 2-month reciprocal transplantation of the coastal mussel Septifer bilocularis collected from reference and elevated pCO2 habitats to explore how they calcify and grow at CO2 seeps on the Pacific coast of Japan. We found significant decreases in condition index (an indication of tissue energy reserves) and shell growth of mussels living under elevated pCO2 conditions. These negative responses in their physiological performance under acidified conditions were closely associated with changes in their food sources (shown by changes to the soft tissue δ13C and δ15N ratios) and changes in their calcifying fluid carbonate chemistry (based on shell carbonate isotopic and elemental signatures). The reduced shell growth rate during the transplantation experiment was further supported by shell δ13C records along their incremental growth layers, as well as their smaller shell size despite being of comparable ontogenetic ages (5-7 years old, based on shell δ18O records). Taken together, these findings demonstrate how ocean acidification at CO2 seeps affects mussel growth and reveal that lowered shell growth helps them survive stressful conditions.


Assuntos
Mytilidae , Água do Mar , Animais , Dióxido de Carbono , Concentração de Íons de Hidrogênio , Acidificação dos Oceanos , Carbonatos , Oceanos e Mares
12.
Sci Total Environ ; 865: 161269, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36587658

RESUMO

Long-term environmental change, sudden pulses of extreme perturbation, or a combination of both can trigger regime shifts by changing the processes and feedbacks which determine community assembly, structure, and function, altering the state of ecosystems. Our understanding of the mechanisms that stabilise against regime shifts or lock communities into altered states is limited, yet also critical to anticipating future states, preventing regime shifts, and reversing unwanted state change. Ocean acidification contributes to the restructuring and simplification of algal systems, however the mechanisms through which this occurs and whether additional drivers are involved requires further study. Using monthly surveys over three years at a shallow-water volcanic seep we examined how the composition of algal communities change seasonally and following periods of significant physical disturbance by typhoons at three levels of ocean acidification (equivalent to means of contemporary ∼350 and future ∼500 and 900 µatm pCO2). Sites exposed to acidification were increasingly monopolised by structurally simple, fast-growing turf algae, and were clearly different to structurally complex macrophyte-dominated reference sites. The distinct contemporary and acidified community states were stabilised and maintained at their respective sites by different mechanisms following seasonal typhoon disturbance. Macroalgal-dominated sites were resistant to typhoon damage. In contrast, significant losses of algal biomass represented a near total ecosystem reset by typhoons for the turf-dominated communities at the elevated pCO2 sites (i.e. negligible resistance). A combination of disturbance and subsequent turf recovery maintained the same simplified state between years (elevated CO2 levels promote turf growth following algal removal, inhibiting macroalgal recruitment). Thus, ocean acidification may promote shifts in algal systems towards degraded ecosystem states, and short-term disturbances which reset successional trajectories may 'lock-in' these alternative states of low structural and functional diversity.


Assuntos
Tempestades Ciclônicas , Ecossistema , Água do Mar/química , Concentração de Íons de Hidrogênio , Acidificação dos Oceanos
13.
Mar Pollut Bull ; 182: 113954, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35914433

RESUMO

Coral diseases contribute to the rapid degradation of coral reefs on a global scale. Although widespread in tropical and subtropical reefs, disease outbreaks have not been described in warm temperate areas. Here, we report the outbreak of a new coral disease in a warm temperate marginal coral community in Japan. Outbreaks of the disease have been observed during the summer and autumn months since 2014. It affects the coral species Porites heronensis and was tentatively named "White Mat Syndrome" (WMS) as it consists of a white microbial mat dominated by Thiothrix sp., a sulfide oxidizing bacteria. Outbreaks followed high seasonal temperatures and were associated with the macroalga Gelidium elegans, which acts as a pathogen reservoir. With ocean warming and the anticipated increase in novel coral-algae interactions as some coral species shift poleward, WMS and emerging diseases could hinder the role of temperate areas as a future coral refuge.


Assuntos
Antozoários , Animais , Antozoários/microbiologia , Recifes de Corais , Surtos de Doenças , Temperatura Alta , Estações do Ano
14.
Zoolog Sci ; 39(1): 41-51, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35106992

RESUMO

Japan has many coastal carbon dioxide seeps as it is one of the most volcanically active parts of the world. These shallow seeps do not have the spectacular aggregations of specialist fauna seen in deep-sea vent systems but they do have gradients in seawater carbonate chemistry that are useful as natural analogues of the effects of ocean acidification on marine biodiversity, ecosystem function and fisheries. Here, we compare macroinvertebrate diversity and abundance on rocky habitats at ambient (mean ≤ 410 µatm) and high (mean 971-1484 µatm) levels of seawater pCO2 in the warm-temperate region of Japan, avoiding areas with toxic sulphur or warm-water conditions. We show that although 70% of intertidal taxa and 40% of shallow subtidal taxa were able to tolerate the high CO2 conditions, there was a marked reduction in the abundance of corals, bivalves and gastropods in acidified conditions. A narrower range of filter feeders, grazers, detritivores, scavengers and carnivores were present at high CO2 resulting in a simplified coastal system that was unable to retain the high standing stocks of marine carbon biomass found in ambient conditions. It is clear that cuts in CO2 emissions would reduce the risks of climate change and ocean acidification impacts on marine biodiversity, shellfish production and biomass in the rocky coastal shores of this region.


Assuntos
Ecossistema , Água do Mar , Animais , Dióxido de Carbono/análise , Concentração de Íons de Hidrogênio , Invertebrados , Japão
15.
Glob Chang Biol ; 27(19): 4771-4784, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34268836

RESUMO

Ocean warming is altering the biogeographical distribution of marine organisms. In the tropics, rising sea surface temperatures are restructuring coral reef communities with sensitive species being lost. At the biogeographical divide between temperate and tropical communities, warming is causing macroalgal forest loss and the spread of tropical corals, fishes and other species, termed "tropicalization". A lack of field research into the combined effects of warming and ocean acidification means there is a gap in our ability to understand and plan for changes in coastal ecosystems. Here, we focus on the tropicalization trajectory of temperate marine ecosystems becoming coral-dominated systems. We conducted field surveys and in situ transplants at natural analogues for present and future conditions under (i) ocean warming and (ii) both ocean warming and acidification at a transition zone between kelp and coral-dominated ecosystems. We show that increased herbivory by warm-water fishes exacerbates kelp forest loss and that ocean acidification negates any benefits of warming for range extending tropical corals growth and physiology at temperate latitudes. Our data show that, as the combined effects of ocean acidification and warming ratchet up, marine coastal ecosystems lose kelp forests but do not gain scleractinian corals. Ocean acidification plus warming leads to overall habitat loss and a shift to simple turf-dominated ecosystems, rather than the complex coral-dominated tropicalized systems often seen with warming alone. Simplification of marine habitats by increased CO2 levels cascades through the ecosystem and could have severe consequences for the provision of goods and services.


Assuntos
Ecossistema , Água do Mar , Animais , Organismos Aquáticos , Recifes de Corais , Concentração de Íons de Hidrogênio
16.
Glob Chang Biol ; 27(19): 4785-4798, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34268846

RESUMO

Calcified coralline algae are ecologically important in rocky habitats in the marine photic zone worldwide and there is growing concern that ocean acidification will severely impact them. Laboratory studies of these algae in simulated ocean acidification conditions have revealed wide variability in growth, photosynthesis and calcification responses, making it difficult to assess their future biodiversity, abundance and contribution to ecosystem function. Here, we apply molecular systematic tools to assess the impact of natural gradients in seawater carbonate chemistry on the biodiversity of coralline algae in the Mediterranean and the NW Pacific, link this to their evolutionary history and evaluate their potential future biodiversity and abundance. We found a decrease in the taxonomic diversity of coralline algae with increasing acidification with more than half of the species lost in high pCO2 conditions. Sporolithales is the oldest order (Lower Cretaceous) and diversified when ocean chemistry favoured low Mg calcite deposition; it is less diverse today and was the most sensitive to ocean acidification. Corallinales were also reduced in cover and diversity but several species survived at high pCO2 ; it is the most recent order of coralline algae and originated when ocean chemistry favoured aragonite and high Mg calcite deposition. The sharp decline in cover and thickness of coralline algal carbonate deposits at high pCO2 highlighted their lower fitness in response to ocean acidification. Reductions in CO2 emissions are needed to limit the risk of losing coralline algal diversity.


Assuntos
Rodófitas , Água do Mar , Ecossistema , Concentração de Íons de Hidrogênio , Oceanos e Mares
17.
Commun Biol ; 4(1): 219, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594188

RESUMO

Human activities are rapidly changing the structure and function of coastal marine ecosystems. Large-scale replacement of kelp forests and coral reefs with turf algal mats is resulting in homogenous habitats that have less ecological and human value. Ocean acidification has strong potential to substantially favour turf algae growth, which led us to examine the mechanisms that stabilise turf algal states. Here we show that ocean acidification promotes turf algae over corals and macroalgae, mediating new habitat conditions that create stabilising feedback loops (altered physicochemical environment and microbial community, and an inhibition of recruitment) capable of locking turf systems in place. Such feedbacks help explain why degraded coastal habitats persist after being initially pushed past the tipping point by global and local anthropogenic stressors. An understanding of the mechanisms that stabilise degraded coastal habitats can be incorporated into adaptive management to better protect the contribution of coastal systems to human wellbeing.


Assuntos
Organismos Aquáticos/metabolismo , Biota , Dióxido de Carbono/metabolismo , Água do Mar/análise , Animais , Antozoários/crescimento & desenvolvimento , Antozoários/metabolismo , Organismos Aquáticos/genética , Organismos Aquáticos/crescimento & desenvolvimento , Monitoramento Ambiental , Retroalimentação Fisiológica , Concentração de Íons de Hidrogênio , Oceanos e Mares , Densidade Demográfica , Ribotipagem , Alga Marinha/crescimento & desenvolvimento , Alga Marinha/metabolismo
18.
Glob Chang Biol ; 27(10): 2174-2187, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33423359

RESUMO

Long-term exposure to CO2 -enriched waters can considerably alter marine biological community development, often resulting in simplified systems dominated by turf algae that possess reduced biodiversity and low ecological complexity. Current understanding of the underlying processes by which ocean acidification alters biological community development and stability remains limited, making the management of such shifts problematic. Here, we deployed recruitment tiles in reference (pHT 8.137 ± 0.056 SD) and CO2 -enriched conditions (pHT 7.788 ± 0.105 SD) at a volcanic CO2 seep in Japan to assess the underlying processes and patterns of algal community development. We assessed (i) algal community succession in two different seasons (Cooler months: January-July, and warmer months: July-January), (ii) the effects of initial community composition on subsequent community succession (by reciprocally transplanting preestablished communities for a further 6 months), and (iii) the community production of resulting communities, to assess how their functioning was altered (following 12 months recruitment). Settlement tiles became dominated by turf algae under CO2 -enrichment and had lower biomass, diversity and complexity, a pattern consistent across seasons. This locked the community in a species-poor early successional stage. In terms of community functioning, the elevated pCO2 community had greater net community production, but this did not result in increased algal community cover, biomass, biodiversity or structural complexity. Taken together, this shows that both new and established communities become simplified by rising CO2 levels. Our transplant of preestablished communities from enriched CO2 to reference conditions demonstrated their high resilience, since they became indistinguishable from communities maintained entirely in reference conditions. This shows that meaningful reductions in pCO2 can enable the recovery of algal communities. By understanding the ecological processes responsible for driving shifts in community composition, we can better assess how communities are likely to be altered by ocean acidification.


Assuntos
Dióxido de Carbono , Água do Mar , Dióxido de Carbono/análise , Ecossistema , Concentração de Íons de Hidrogênio , Japão , Oceanos e Mares
19.
Sci Total Environ ; 725: 138501, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32298893

RESUMO

Ocean acidification will likely change the structure and function of coastal marine ecosystems over coming decades. Volcanic carbon dioxide seeps generate dissolved CO2 and pH gradients that provide realistic insights into the direction and magnitude of these changes. Here, we used fish and benthic community surveys to assess the spatio-temporal dynamics of fish community properties off CO2 seeps in Japan. Adding to previous evidence from ocean acidification ecosystem studies conducted elsewhere, our findings documented shifts from calcified to non-calcified habitats with reduced benthic complexity. In addition, we found that such habitat transition led to decreased diversity of associated fish and to selection of those fish species better adapted to simplified ecosystems dominated by algae. Our data suggest that near-future projected ocean acidification levels will oppose the ongoing range expansion of coral reef-associated fish due to global warming.


Assuntos
Ecossistema , Água do Mar , Animais , Dióxido de Carbono/análise , Recifes de Corais , Concentração de Íons de Hidrogênio , Japão
20.
Mar Biotechnol (NY) ; 22(6): 727-738, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32185542

RESUMO

The effects of ocean acidification on ecosystems remain poorly understood, because it is difficult to simulate the effects of elevated CO2 on entire marine communities. Natural systems enriched in CO2 are being used to help understand the long-term effects of ocean acidification in situ. Here, we compared biofilm bacterial communities on intertidal cobbles/boulders and bedrock along a seawater CO2 gradient off Japan. Samples sequenced for 16S rRNA showed differences in bacterial communities with different pCO2 and between habitat types. In both habitats, bacterial diversity increased in the acidified conditions. Differences in pCO2 were associated with differences in the relative abundance of the dominant phyla. However, despite the differences in community composition, there was no indication that these changes would be significant for nutrient cycling and ecosystem function. As well as direct effects of seawater chemistry on the biofilm, increased microalgal growth and decreased grazing may contribute to the shift in bacterial composition at high CO2, as documented by other studies. Thus, the effects of changes in bacterial community composition due to globally increasing pCO2 levels require further investigation to assess the implications for marine ecosystem function. However, the apparent lack of functional shifts in biofilms along the pCO2 gradient is a reassuring indicator of stability of their ecosystem functions in shallow ocean margins.


Assuntos
Bactérias/classificação , Biofilmes , Dióxido de Carbono/química , Água do Mar/química , Organismos Aquáticos , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Ecossistema , Japão , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...