Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Respir Res ; 24(1): 272, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37932762

RESUMO

BACKGROUND: SARS-CoV-2, the agent responsible for the COVID-19 pandemic, enters cells through viral spike glycoprotein binding to the cellular receptor, angiotensin-converting enzyme 2 (ACE2). Given the lack of effective antivirals targeting SARS-CoV-2, we previously utilized systematic evolution of ligands by exponential enrichment (SELEX) and selected fluoro-arabino nucleic acid (FANA) aptamer R8-9 that was able to block the interaction between the viral receptor-binding domain and ACE2. METHODS: Here, we further assessed FANA-R8-9 as an entry inhibitor in contexts that recapitulate infection in vivo. RESULTS: We demonstrate that FANA-R8-9 inhibits spike-bearing pseudovirus particle uptake in cell lines. Then, using an in-vitro model of human airway epithelium (HAE) and SARS-CoV-2 virus, we show that FANA-R8-9 significantly reduces viral infection when added either at the time of inoculation, or several hours later. These results were specific to the R8-9 sequence, not the xeno-nucleic acid utilized to make the aptamer. Importantly, we also show that FANA-R8-9 is stable in HAE culture secretions and has no overt cytotoxic effects. CONCLUSIONS: Together, these results suggest that FANA-R8-9 effectively prevents infection by specific SARS-CoV-2 variants and indicate that aptamer technology could be utilized to target other clinically-relevant viruses in the respiratory mucosa.


Assuntos
COVID-19 , Ácidos Nucleicos , Humanos , COVID-19/metabolismo , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/metabolismo , Ácidos Nucleicos/metabolismo , Pandemias/prevenção & controle , Ligação Proteica , Mucosa Respiratória/metabolismo , Epitélio/metabolismo
2.
bioRxiv ; 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37808754

RESUMO

Background: SARS-CoV-2, the agent responsible for the COVID-19 pandemic, enters cells through viral spike glycoprotein binding to the cellular receptor, angiotensin-converting enzyme 2 (ACE2). Given the lack of effective antivirals targeting SARS-CoV-2, we previously utilized systematic evolution of ligands by exponential enrichment (SELEX) and selected fluoro-arabino nucleic acid (FANA) aptamer R8-9 that was able to block the interaction between the viral receptor-binding domain and ACE2. Methods: Here, we further assessed FANA-R8-9 as an entry inhibitor in contexts that recapitulate infection in vivo. Results: We demonstrate that FANA-R8-9 inhibits spike-bearing pseudovirus particle uptake in cell lines. Then, using an in-vitro model of human airway epithelium (HAE) and SARS-CoV-2 virus, we show that FANA-R8-9 significantly reduces viral infection when added either at the time of inoculation, or several hours later. These results were specific to the R8-9 sequence, not the xeno-nucleic acid utilized to make the aptamer. Importantly, we also show that FANA-R8-9 is stable in HAE culture secretions and has no overt cytotoxic effects. Conclusions: Together, these results suggest that FANA-R8-9 effectively prevents infection by specific SARS-CoV-2 variants and indicate that aptamer technology could be utilized to target other clinically-relevant viruses in the respiratory mucosa.

3.
Viruses ; 12(12)2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322395

RESUMO

Respiratory viruses remain a significant cause of morbidity and mortality in the human population, underscoring the importance of ongoing basic research into virus-host interactions. However, many critical aspects of infection are difficult, if not impossible, to probe using standard cell lines, 2D culture formats, or even animal models. In vitro systems such as airway epithelial cultures at air-liquid interface, organoids, or 'on-chip' technologies allow interrogation in human cells and recapitulate emergent properties of the airway epithelium-the primary target for respiratory virus infection. While some of these models have been used for over thirty years, ongoing advancements in both culture techniques and analytical tools continue to provide new opportunities to investigate airway epithelial biology and viral infection phenotypes in both normal and diseased host backgrounds. Here we review these models and their application to studying respiratory viruses. Furthermore, given the ability of these systems to recapitulate the extracellular microenvironment, we evaluate their potential to serve as a platform for studies specifically addressing viral interactions at the mucosal surface and detail techniques that can be employed to expand our understanding.


Assuntos
Interações Hospedeiro-Patógeno , Mucosa Respiratória/virologia , Infecções por Respirovirus/metabolismo , Infecções por Respirovirus/virologia , Respirovirus/fisiologia , Comunicação Celular , Técnicas de Cultura de Células , Células Cultivadas , Espaço Extracelular/metabolismo , Modelos Biológicos , Organoides , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Infecções por Respirovirus/patologia , Engenharia Tecidual , Vírion
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA