Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Emerg Top Life Sci ; 6(2): 153-162, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35302160

RESUMO

Plants produce a broad variety of specialized metabolites with distinct biological activities and potential applications. Despite this potential, most biosynthetic pathways governing specialized metabolite production remain largely unresolved across the plant kingdom. The rapid advancement of genetics and biochemical tools has enhanced our ability to identify plant specialized metabolic pathways. Further advancements in transgenic technology and synthetic biology approaches have extended this to a desire to design new pathways or move existing pathways into new systems to address long-running difficulties in crop systems. This includes improving abiotic and biotic stress resistance, boosting nutritional content, etc. In this review, we assess the potential and limitations for (1) identifying specialized metabolic pathways in plants with multi-omics tools and (2) using these enzymes in synthetic biology or crop engineering. The goal of these topics is to highlight areas of research that may need further investment to enhance the successful application of synthetic biology for exploiting the myriad of specialized metabolic pathways.


Assuntos
Plantas , Biologia Sintética , Vias Biossintéticas , Redes e Vias Metabólicas , Plantas/metabolismo , Estresse Fisiológico
3.
Nat Chem Biol ; 16(8): 857-865, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32424304

RESUMO

Agricultural biotechnology strategies often require the precise regulation of multiple genes to effectively modify complex plant traits. However, most efforts are hindered by a lack of characterized tools that allow for reliable and targeted expression of transgenes. We have successfully engineered a library of synthetic transcriptional regulators that modulate expression strength in planta. By leveraging orthogonal regulatory systems from Saccharomyces spp., we have developed a strategy for the design of synthetic activators, synthetic repressors, and synthetic promoters and have validated their use in Nicotiana benthamiana and Arabidopsis thaliana. This characterization of contributing genetic elements that dictate gene expression represents a foundation for the rational design of refined synthetic regulators. Our findings demonstrate that these tools provide variation in transcriptional output while enabling the concerted expression of multiple genes in a tissue-specific and environmentally responsive manner, providing a basis for generating complex genetic circuits that process endogenous and environmental stimuli.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Elementos Reguladores de Transcrição/genética , Arabidopsis/genética , Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Regiões Promotoras Genéticas/genética , Saccharomyces/enzimologia , Saccharomyces/genética , Nicotiana/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA