Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Neurotrauma Rep ; 5(1): 81-94, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38463416

RESUMO

Major determinants of the biological background or reserve, such as age, biological sex, comorbidities (diabetes, hypertension, obesity, etc.), and medications (e.g., anticoagulants), are known to affect outcome after traumatic brain injury (TBI). With the unparalleled data richness of coronavirus disease 2019 (COVID-19; ∼375,000 and counting!) as well as the chronic form, long-COVID, also called post-acute sequelae SARS-CoV-2 infection (PASC), publications (∼30,000 and counting) covering virtually every aspect of the diseases, pathomechanisms, biomarkers, disease phases, symptomatology, etc., have provided a unique opportunity to better understand and appreciate the holistic nature of diseases, interconnectivity between organ systems, and importance of biological background in modifying disease trajectories and affecting outcomes. Such a holistic approach is badly needed to better understand TBI-induced conditions in their totality. Here, I briefly review what is known about long-COVID/PASC, its underlying-suspected-pathologies, the pathobiological changes induced by TBI, in other words, the TBI endophenotypes, discuss the intersection of long-COVID/PASC and TBI-induced pathobiologies, and how by considering some of the known factors affecting the person's biological background and the inclusion of mechanistic molecular biomarkers can help to improve the clinical management of TBI patients.

3.
Int J Mol Sci ; 24(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38003454

RESUMO

There has been an explosion of research into biofluid (blood, cerebrospinal fluid, CSF)-based protein biomarkers in traumatic brain injury (TBI) over the past decade. The availability of very large datasets, such as CENTRE-TBI and TRACK-TBI, allows for correlation of blood- and CSF-based molecular (protein), radiological (structural) and clinical (physiological) marker data to adverse clinical outcomes. The quality of a given biomarker has often been framed in relation to the predictive power on the outcome quantified from the area under the Receiver Operating Characteristic (ROC) curve. However, this does not in itself provide clinical utility but reflects a statistical association in any given population between one or more variables and clinical outcome. It is not currently established how to incorporate and integrate biofluid-based biomarker data into patient management because there is no standardized role for such data in clinical decision making. We review the current status of biomarker research and discuss how we can integrate existing markers into current clinical practice and what additional biomarkers do we need to improve diagnoses and to guide therapy and to assess treatment efficacy. Furthermore, we argue for employing machine learning (ML) capabilities to integrate the protein biomarker data with other established, routinely used clinical diagnostic tools, to provide the clinician with actionable information to guide medical intervention.


Assuntos
Lesões Encefálicas Traumáticas , Humanos , Lesões Encefálicas Traumáticas/diagnóstico , Biomarcadores , Aprendizado de Máquina , Curva ROC
4.
Neurotrauma Rep ; 4(1): 404-409, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37360545

RESUMO

Chronic consequences of mild traumatic brain injury (mTBI) are heterogeneous, but may be treatable with targeted medical and rehabilitation interventions. A biological signature for the likelihood of response to therapy (i.e., "predictive" biomarkers) would empower personalized medicine post-mTBI. The purpose of this study was to correlate pre-intervention blood biomarker levels and the likelihood of response to targeted interventions for patients with chronic issues attributable to mTBI. Patients with chronic symptoms and/or disorders secondary to mTBI >3 months previous (104 days to 15 years; n = 74) were enrolled. Participants completed pre-intervention assessments of symptom burden, comprehensive clinical evaluation, and blood-based biomarker measurements. Multi-domain targeted interventions for specific symptoms and impairments across a 6-month treatment period were prescribed. Participants completed a follow-up testing after the treatment period. An all-possible model's backward logistic regression was built to identify predictors of improvement in relation to blood biomarker levels before intervention. The minimum clinically important difference (MCID) of the change score (post-intervention subtracted from pre-intervention) for the Post-Concussion Symptom Scale (PCSS) to identify treatment responders from non-responders was the primary outcome. The MCID for total PCSS score was 10. The model to predict change in PCSS score over the 6-month intervention was significant (R2 = 0.09; p = 0.01) and identified ubiquitin C-terminal hydrolase L1 (odds ratio [OR] = 2.53; 95% confidence interval [CI], 1.18-5.46; p = 0.02) and hyperphosphorylated tau (p-tau; OR = 0.70; 95% CI, 0.51-0.96; p = 0.03) as significant predictors of symptom improvement beyond the PCSS MCID. In this cohort of chronic TBI subjects, blood biomarkers before rehabilitation intervention predicted the likelihood of response to targeted therapy for chronic disorders post-TBI.

5.
Epilepsia Open ; 8(2): 586-608, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37026764

RESUMO

OBJECTIVE: We used the lateral fluid percussion injury (LFPI) model of moderate-to-severe traumatic brain injury (TBI) to identify early plasma biomarkers predicting injury, early post-traumatic seizures or neuromotor functional recovery (neuroscores), considering the effect of levetiracetam, which is commonly given after severe TBI. METHODS: Adult male Sprague-Dawley rats underwent left parietal LFPI, received levetiracetam (200 mg/kg bolus, 200 mg/kg/day subcutaneously for 7 days [7d]) or vehicle post-LFPI, and were continuously video-EEG recorded (n = 14/group). Sham (craniotomy only, n = 6), and naïve controls (n = 10) were also used. Neuroscores and plasma collection were done at 2d or 7d post-LFPI or equivalent timepoints in sham/naïve. Plasma protein biomarker levels were determined by reverse phase protein microarray and classified according to injury severity (LFPI vs. sham/control), levetiracetam treatment, early seizures, and 2d-to-7d neuroscore recovery, using machine learning. RESULTS: Low 2d plasma levels of Thr231 -phosphorylated tau protein (pTAU-Thr231 ) and S100B combined (ROC AUC = 0.7790) predicted prior craniotomy surgery (diagnostic biomarker). Levetiracetam-treated LFPI rats were differentiated from vehicle treated by the 2d-HMGB1, 2d-pTAU-Thr231 , and 2d-UCHL1 plasma levels combined (ROC AUC = 0.9394) (pharmacodynamic biomarker). Levetiracetam prevented the seizure effects on two biomarkers that predicted early seizures only among vehicle-treated LFPI rats: pTAU-Thr231 (ROC AUC = 1) and UCHL1 (ROC AUC = 0.8333) (prognostic biomarker of early seizures among vehicle-treated LFPI rats). Levetiracetam-resistant early seizures were predicted by high 2d-IFNγ plasma levels (ROC AUC = 0.8750) (response biomarker). 2d-to-7d neuroscore recovery was best predicted by higher 2d-S100B, lower 2d-HMGB1, and 2d-to-7d increase in HMGB1 or decrease in TNF (P < 0.05) (prognostic biomarkers). SIGNIFICANCE: Antiseizure medications and early seizures need to be considered in the interpretation of early post-traumatic biomarkers.


Assuntos
Lesões Encefálicas Traumáticas , Proteína HMGB1 , Ratos , Masculino , Animais , Levetiracetam/farmacologia , Ratos Sprague-Dawley , Lesões Encefálicas Traumáticas/tratamento farmacológico , Convulsões/tratamento farmacológico , Biomarcadores , Proteínas Sanguíneas
6.
Neurotrauma Rep ; 4(1): 251-254, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37095856

RESUMO

Sleep disturbances occur in up to 70% of patients with mild traumatic brain injury (mTBI). Modern mTBI management recommends targeted treatment for the patient's unique clinical manifestations (i.e., obstructive sleep apnea, insomnia). The purpose of this study was to evaluate the association of plasma biomarkers with symptom reports, overnight sleep evaluations, and response to treatment for sleep disturbances secondary to mTBI. This study is a secondary analysis of a prospective multiple interventional trial of patients with chronic issues related to mTBI. Pre- and post-intervention assessments were conducted, including overnight sleep apnea evaluation, the Pittsburgh Sleep Quality Index (PSQI), and blinded analysis of blood biomarkers. Bivariate Spearman correlations were conducted for pre-intervention plasma biomarker concentrations and 1) PSQI change scores and 2) pre-intervention sleep apnea outcomes (i.e., oxygen saturation measures). A backward logistic regression model was built to evaluate the association of pre-intervention plasma biomarkers with improvement in PSQI over the treatment period (p < 0.05). Participants were 36.3 ± 8.6 years old and 6.1 ± 3.8 years from their index mTBI. Participants reported subjective improvements (PSQI = -3.7 ± 3.8), whereas 39.3% (n = 11) had improved PSQI scores beyond the minimum clinically important difference (MCID). PSQI change scores correlated with von Willebrand factor (vWF; ρ = -0.50; p = 0.02) and tau (ρ = -0.53; p = 0.01). Hyperphosphorylated tau correlated with average saturation (ρ = -0.29; p = 0.03), lowest desaturation (ρ = -0.27; p = 0.048), and baseline saturation (ρ = -0.31; p = 0.02). The multi-variate model (R 2 = 0.33; p = 0.001) retained only pre-intervention vWF as a predictor (odds ratio = 3.41; 95% confidence interval, 1.44-8.08; p = 0.005) of improving PSQI scores beyond the MCID. vWF had good discrimination (area under the curve = 0.83; p = 0.01), with an overall accuracy of 77%, sensitivity of 46.2%, and specificity of 90.0%. Validation of vWF as a potential predictive biomarker of sleep improvement post-mTBI could optimize personalized management and healthcare utilization.

7.
Neurotrauma Rep ; 4(1): 107-117, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36895820

RESUMO

Monitoring protein biomarker levels in the cerebrospinal fluid (CSF) can help assess injury severity and outcome after traumatic brain injury (TBI). Determining injury-induced changes in the proteome of brain extracellular fluid (bECF) can more closely reflect changes in the brain parenchyma, but bECF is not routinely available. The aim of this pilot study was to compare time-dependent changes of S100 calcium-binding protein B (S100B), neuron-specific enolase (NSE), total Tau, and phosphorylated Tau (p-Tau) levels in matching CSF and bECF samples collected at 1, 3, and 5 days post-injury from severe TBI patients (n = 7; GCS 3-8) using microcapillary-based western analysis. We found that time-dependent changes in CSF and bECF levels were most pronounced for S100B and NSE, but there was substantial patient-to-patient variability. Importantly, the temporal pattern of biomarker changes in CSF and bECF samples showed similar trends. We also detected two different immunoreactive forms of S100B in both CSF and bECF samples, but the contribution of the different immunoreactive forms to total immunoreactivity varied from patient to patient and time point to time point. Our study is limited, but it illustrates the value of both quantitative and qualitative analysis of protein biomarkers and the importance of serial sampling for biofluid analysis after severe TBI.

8.
Neurotrauma Rep ; 3(1): 479-490, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36337080

RESUMO

Because of their unknown long-term effects, repeated mild traumatic brain injuries (TBIs), including the low, subconcussive ones, represent a specific challenge to healthcare systems. It has been hypothesized that they can have a cumulative effect, and they may cause molecular changes that can lead to chronic degenerative processes. Military personnel are especially vulnerable to consequences of subconcussive TBIs because their training involves repeated exposures to mild explosive blasts. In this pilot study, we collected blood samples at baseline, 6 h, 24 h, 72 h, 2 weeks, and 3 months after heavy weapons training from students and instructors who were exposed to repeated subconcussive blasts. Samples were analyzed using the reverse and forward phase protein microarray platforms. We detected elevated serum levels of glial fibrillary acidic protein, ubiquitin C-terminal hydrolase L1 (UCH-L1), nicotinic alpha 7 subunit (CHRNA7), occludin (OCLN), claudin-5 (CLDN5), matrix metalloprotease 9 (MMP9), and intereukin-6 (IL-6). Importantly, serum levels of most of the tested protein biomarkers were the highest at 3 months after exposures. We also detected elevated autoantibody titers of proteins related to vascular and neuroglia-specific proteins at 3 months after exposures as compared to baseline levels. These findings suggest that repeated exposures to subconcussive blasts can induce molecular changes indicating not only neuron and glia damage, but also vascular changes and inflammation that are detectable for at least 3 months after exposures whereas elevated titers of autoantibodies against vascular and neuroglia-specific proteins can indicate an autoimmune process.

9.
Front Surg ; 9: 862478, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35529911

RESUMO

Peripheral nerve injury is a significant public health challenge, with limited treatment options and potential lifelong impact on function. More than just an intrinsic part of nerve anatomy, the vascular network of nerves impact regeneration, including perfusion for metabolic demands, appropriate signaling and growth factors, and structural scaffolding for Schwann cell and axonal migration. However, the established nerve injury classification paradigm proposed by Sydney Sunderland in 1951 is based solely on hierarchical disruption to gross anatomical nerve structures and lacks further information regarding the state of cellular, metabolic, or inflammatory processes that are critical in determining regenerative outcomes. This review covers the anatomical structure of nerve-associated vasculature, and describes the biological processes that makes these vessels critical to successful end-organ reinnervation after severe nerve injuries. We then propose a theoretical framework that incorporates measurements of blood vessel perfusion and inflammation to unify perspectives on all mechanisms of nerve injury.

10.
J Neurotrauma ; 39(11-12): 800-808, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35176905

RESUMO

Clinical decisions related to sports-related concussion (SRC) are challenging, because of the heterogenous nature of SRC symptoms coupled with the current reliance on subjective self-reported symptom measures. Sensitive and objective methods that can diagnose SRC and determine recovery would aid clinical management, and there is evidence that SRC induces changes in circulating protein biomarkers, indicative of neuroaxonal injury. However, potential blood biomarkers related to other pathobiological responses linked to SRC are still poorly understood. Therefore, here we analyzed blood samples from concussed (male = 30; female = 9) and non-concussed (male = 74; female = 27) amateur Australian rules football players collected during the pre-season (i.e., baseline), and at 2, 6, and 13 days post-SRC to determine time-dependent changes in serum levels of biomarkers related to glial (i.e., brain lipid-binding protein [BLBP]; phosphoprotein enriched in astrocytes 15) and cerebrovascular injury (i.e., von Willebrand factor, claudin-5), inflammation (i.e., fibrinogen, high mobility group box protein 1), and oxidative stress (i.e., 4-hydroxynoneal). In females, BLBP levels were significantly decreased at 2 days post-SRC compared with their pre-season baseline; however, area under the receiver operating characteristic curve (AUROC) analysis found that BLBP was unable to distinguish between SRC and controls. In males, AUROC analysis revealed a statistically significant change at 2 days post-SRC in the serum levels of 4-hydroxynoneal, however the associated AUROC value (0.6373) indicated little clinical utility for this biomarker in distinguishing SRC from controls. There were no other statistically significant findings. These results indicate that the serum biomarkers tested in this study hold little clinical value in the management of SRC at 2, 6, and 13 days post-injury.


Assuntos
Traumatismos em Atletas , Concussão Encefálica , Esportes de Equipe , Feminino , Humanos , Masculino , Traumatismos em Atletas/complicações , Austrália , Biomarcadores , Proteínas Sanguíneas , Inflamação , Estresse Oxidativo
11.
Neuroscientist ; 28(6): 594-612, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-33966527

RESUMO

The diagnosis, prognosis, and treatment of mild traumatic brain injuries (mTBIs), such as concussions, are significant unmet medical issues. The kinetic forces that occur in mTBI adversely affect the cerebral vasculature, making cerebrovascular injury (CVI) a pathophysiological hallmark of mTBI. Given the importance of a healthy cerebrovascular system in overall brain function, CVI is likely to contribute to neurological dysfunction after mTBI. As such, CVI and related pathomechanisms may provide objective biomarkers and therapeutic targets to improve the clinical management and outcomes of mTBI. Despite this potential, until recently, few studies have focused on the cerebral vasculature in this context. This article will begin by providing a brief overview of the cerebrovascular system followed by a review of the literature regarding how mTBI can affect the integrity and function of the cerebrovascular system, and how this may ultimately contribute to neurological dysfunction and neurodegenerative conditions. We then discuss promising avenues of research related to mTBI biomarkers and interventions that target CVI, and conclude that a clinical approach that takes CVI into account could result in substantial improvements in the care and outcomes of patients with mTBI.


Assuntos
Concussão Encefálica , Doenças Neurodegenerativas , Humanos , Concussão Encefálica/terapia , Biomarcadores
12.
J Neurotrauma ; 38(19): 2652-2666, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33906422

RESUMO

Blood-based protein biomarkers have revolutionized several fields of medicine by enabling molecular level diagnosis, as well as monitoring disease progression and treatment efficacy. Traumatic brain injury (TBI) so far has benefitted only moderately from using protein biomarkers to improve injury outcome. Because of its complexity and dynamic nature, TBI, especially its most prevalent mild form (mild TBI; mTBI), presents unique challenges toward protein biomarker discovery and validation given that blood is frequently obtained and processed outside of the clinical laboratory (e.g., athletic fields, battlefield) under variable conditions. As it stands, the field of mTBI blood biomarkers faces a number of outstanding questions. Do elevated blood levels of currently used biomarkers-ubiquitin carboxy-terminal hydrolase L1, glial fibrillary acidic protein, neurofilament light chain, and tau/p-tau-truly mirror the extent of parenchymal damage? Do these different proteins represent distinct injury mechanisms? Is the blood-brain barrier a "brick wall"? What is the relationship between intra- versus extracranial values? Does prolonged elevation of blood levels reflect de novo release or extended protein half-lives? Does biological sex affect the pathobiological responses after mTBI and thus blood levels of protein biomarkers? At the practical level, it is unknown how pre-analytical variables-sample collection, preparation, handling, and stability-affect the quality and reliability of biomarker data. The ever-increasing sensitivity of assay systems and lack of quality control of samples, combined with the almost complete reliance on antibody-based assay platforms, represent important unsolved issues given that false-negative results can lead to false clinical decision making and adverse outcomes. This article serves as a commentary on the state of mTBI biomarkers and the landscape of significant challenges. We highlight and discusses several biological and methodological "known unknowns" and close with some practical recommendations.


Assuntos
Biomarcadores/sangue , Concussão Encefálica/sangue , Concussão Encefálica/patologia , Concussão Encefálica/etiologia , Humanos , Valor Preditivo dos Testes , Reprodutibilidade dos Testes
13.
Nat Rev Neurol ; 17(4): 231-242, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33594276

RESUMO

Onset of many forms of epilepsy occurs after an initial epileptogenic insult or as a result of an identified genetic defect. Given that the precipitating insult is known, these epilepsies are, in principle, amenable to secondary prevention. However, development of preventive treatments is difficult because only a subset of individuals will develop epilepsy and we cannot currently predict which individuals are at the highest risk. Biomarkers that enable identification of these individuals would facilitate clinical trials of potential anti-epileptogenic treatments, but no such prognostic biomarkers currently exist. Several putative molecular, imaging, electroencephalographic and behavioural biomarkers of epileptogenesis have been identified, but clinical translation has been hampered by fragmented and poorly coordinated efforts, issues with inter-model reproducibility, study design and statistical approaches, and difficulties with validation in patients. These challenges demand a strategic roadmap to facilitate the identification, characterization and clinical validation of biomarkers for epileptogenesis. In this Review, we summarize the state of the art with respect to biomarker research in epileptogenesis and propose a five-phase roadmap, adapted from those developed for cancer and Alzheimer disease, that provides a conceptual structure for biomarker research.


Assuntos
Biomarcadores , Eletroencefalografia , Epilepsia/diagnóstico , MicroRNAs , Neuroimagem , Animais , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Epilepsia/sangue , Epilepsia/líquido cefalorraquidiano , Epilepsia/fisiopatologia , Humanos , MicroRNAs/sangue , MicroRNAs/líquido cefalorraquidiano , Guias de Prática Clínica como Assunto
15.
Front Neurol ; 11: 549624, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117257

RESUMO

Studies have indicated that concussive and sub-concussive brain injuries that are frequent during collision sports may lead to long-term neurological abnormalities, however there is a knowledge gap on how biological sex modifies outcomes. Blood-based biomarkers can help to identify the molecular pathology induced by brain injuries and to better understand how biological sex affects the molecular changes. We therefore analyzed serum protein biomarkers in male (n = 50) and female (n = 33) amateur Australian rules footballers (i.e., Australia's most participated collision sport), both with a history of concussion (HoC) and without a history of concussion (NoHoC). These profiles were compared to those of age-matched control male (n = 24) and female (n = 20) athletes with no history of neurotrauma or participation in collision sports. Serum levels of protein markers indicative of neuronal, axonal and glial injury (UCH-L1, NfL, tau, p-tau, GFAP, BLBP, PEA15), metabolic (4-HNE) and vascular changes (VEGF-A, vWF, CLDN5), and inflammation (HMGB1) were assessed using reverse phase protein microarrays. Male, but not female, footballers had increased serum levels of VEGF-A compared to controls regardless of concussion history. In addition, only male footballers who had HoC had increased serum levels of 4-HNE. These findings being restricted to males may be related to shorter collision sport career lengths for females compared to males. In summary, these findings show that male Australian rules footballers have elevated levels of serum biomarkers indicative of vascular abnormalities (VEGF-A) and oxidative stress (4-HNE) in comparison to non-collision control athletes. While future studies are required to determine how these findings relate to neurological function, serum levels of VEGF-A and 4-HNE may be useful to monitor subclinical neurological injury in males participating in collision sports.

16.
J Neurotrauma ; 37(12): 1381-1391, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32013731

RESUMO

Brain protein biomarker clearance to blood in traumatic brain injury (TBI) is not fully understood. The aim of this study was to analyze the effect that a disrupted blood-brain barrier (BBB) had on biomarker clearance. Seventeen severe TBI patients admitted to Karolinska University Hospital were prospectively included. Cerebrospinal fluid (CSF) and blood concentrations of S100 calcium binding protein B (S100B) and neuron-specific enolase (NSE) were analyzed every 6-12 h for ∼1 week. Blood and CSF albumin were analyzed every 12-24 h, and BBB integrity was assessed using the CSF:blood albumin quotient (QA). We found that time-dependent changes in the CSF and blood levels of the two biomarkers were similar, but that the correlation between the biomarkers and QA was lower for NSE (ρ = 0.444) than for S100B (ρ = 0.668). Because data were longitudinal, we also conducted cross correlation analyses, which indicated a directional flow and lag-time of biomarkers from CSF to blood. For S100B, this lag-time could be ascribed to BBB integrity, whereas for NSE it could not. Upon inferential modelling, using generalized least square estimation (S100B) or linear mixed models (NSE), QA (p = 0.045), time from trauma (p < 0.001), time from trauma2 (p = 0.023), and CSF biomarker levels (p = 0.008) were independent predictors of S100B in blood. In contrast, for NSE, only time from trauma was significant (p < 0.001). These findings are novel and important, but must be carefully interpreted because of different characteristics between the two proteins. Nonetheless, we present the first data that indicate that S100B and NSE are cleared differently from the central nervous system, and that both the disrupted BBB and additional alternative pathways, such as the recently described glymphatic system, may play a role. This is of importance both for clinicians aiming to utilize these biomarkers and for the pathophysiological understanding of brain protein clearance, but warrants further examination.


Assuntos
Barreira Hematoencefálica/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Sistema Glinfático/metabolismo , Fosfopiruvato Hidratase/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Índice de Gravidade de Doença , Adulto , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Biomarcadores/metabolismo , Barreira Hematoencefálica/patologia , Lesões Encefálicas Traumáticas/diagnóstico , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto Jovem
17.
Bone ; 133: 115263, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32032779

RESUMO

Neurological heterotopic ossification (NHO) is characterized by abnormal bone growth in soft tissue and joints in response to injury to the central nervous system. The ectopic bone frequently causes pain, restricts mobility, and decreases the quality of life for those affected. NHO commonly develops in severe traumatic brain injury (TBI) patients, particularly in the presence of concomitant musculoskeletal injuries (i.e. polytrauma). There are currently no animal models that accurately mimic these combinations of injuries, which has limited our understanding of NHO pathobiology, as well as the development of biomarkers and treatments, in TBI patients. In order to address this shortcoming, here we present a novel rat model that combines TBI, femoral fracture, and muscle crush injury. Young adult male Sprague Dawley rats were randomly assigned into three different injury groups: triple sham-injury, peripheral injury only (i.e., sham-TBI + fracture + muscle injury) or triple injury (i.e., TBI + fracture + muscle injury). Evidence of ectopic bone in the injured hind-limb, as confirmed by micro-computed tomography (µCT), was found at 6-weeks post-injury in 70% of triple injury rats, 20% of peripheral injury rats, and 0% of the sham-injured controls. Furthermore, the triple injury rats had higher ectopic bone severity scores than the sham-injured group. This novel model will provide a platform for future studies to identify underlying mechanisms, biomarkers, and develop evidence based pharmacological treatments to combat this debilitating long-term complication of TBI and polytrauma.


Assuntos
Lesões Encefálicas Traumáticas , Traumatismo Múltiplo , Ossificação Heterotópica , Animais , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Modelos Animais de Doenças , Humanos , Masculino , Ossificação Heterotópica/diagnóstico por imagem , Ossificação Heterotópica/etiologia , Qualidade de Vida , Ratos , Ratos Sprague-Dawley , Microtomografia por Raio-X
18.
Sci Rep ; 9(1): 14626, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31602002

RESUMO

A single mild traumatic brain injury (mTBI) typically causes only transient symptoms, but repeated mTBI (RmTBI) is associated with cumulative and chronic neurological abnormalities. Clinical management of mTBI is challenging due to the heterogeneous, subjective and transient nature of symptoms, and thus would be aided by objective biomarkers. Promising biomarkers including advanced magnetic resonance imaging (MRI) and plasma levels of select proteins were examined here in a rat model of RmTBI. Rats received either two mild fluid percussion or sham injuries administered five days apart. Rats underwent MRI and behavioral testing 1, 3, 5, 7, and 30 days after the second injury and blood samples were collected on days 1, 7, and 30. Structural and diffusion-weighted MRI revealed that RmTBI rats had abnormalities in the cortex and corpus callosum. Proteomic analysis of plasma found that RmTBI rats had abnormalities in markers indicating axonal and vascular injury, metabolic and mitochondrial dysfunction, and glial reactivity. These changes occurred in the presence of ongoing cognitive and sensorimotor deficits in the RmTBI rats. Our findings demonstrate that RmTBI can result in chronic neurological abnormalities, provide insight into potential contributing pathophysiological mechanisms, and supports the use of MRI and plasma protein measures as RmTBI biomarkers.


Assuntos
Proteínas Sanguíneas/análise , Concussão Encefálica/diagnóstico , Córtex Cerebral/diagnóstico por imagem , Corpo Caloso/diagnóstico por imagem , Animais , Técnicas de Observação do Comportamento , Comportamento Animal/fisiologia , Biomarcadores/sangue , Concussão Encefálica/sangue , Concussão Encefálica/fisiopatologia , Córtex Cerebral/fisiopatologia , Corpo Caloso/fisiopatologia , Imagem de Difusão por Ressonância Magnética , Modelos Animais de Doenças , Humanos , Masculino , Proteômica , Ratos , Ratos Long-Evans
19.
J Neurotrauma ; 36(11): 1724-1737, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30628544

RESUMO

Traumatic brain injury (TBI) triggers multiple pathobiological responses with differing onsets, magnitudes, and durations. Identifying the therapeutic window of individual pathologies is critical for successful pharmacological treatment. Dozens of experimental pharmacotherapies have been successfully tested in rodent models, yet all of them (to date) have failed in clinical trials. The differing time scales of rodent and human biological and pathological processes may have contributed to these failures. We compared rodent versus human time scales of TBI-induced changes in cerebral glucose metabolism, inflammatory processes, axonal integrity, and water homeostasis based on published data. We found that the trajectories of these pathologies run on different timescales in the two species, and it appears that there is no universal "conversion rate" between rodent and human pathophysiological processes. For example, the inflammatory process appears to have an abbreviated time scale in rodents versus humans relative to cerebral glucose metabolism or axonal pathologies. Limitations toward determining conversion rates for various pathobiological processes include the use of differing outcome measures in experimental and clinical TBI studies and the rarity of longitudinal studies. In order to better translate time and close the translational gap, we suggest 1) using clinically relevant outcome measures, primarily in vivo imaging and blood-based proteomics, in experimental TBI studies and 2) collecting data at multiple post-injury time points with a frequency exceeding the expected information content by two or three times. Combined with a big data approach, we believe these measures will facilitate the translation of promising experimental treatments into clinical use.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/fisiopatologia , Modelos Animais de Doenças , Animais , Humanos , Fatores de Tempo
20.
Neurobiol Dis ; 123: 59-68, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30030023

RESUMO

Traumatic brain injury (TBI) is a major risk factor for acquired epilepsy. Post-traumatic epilepsy (PTE) develops over time in up to 50% of patients with severe TBI. PTE is mostly unresponsive to traditional anti-seizure treatments suggesting distinct, injury-induced pathomechanisms in the development of this condition. Moderate and severe TBIs cause significant tissue damage, bleeding, neuron and glia death, as well as axonal, vascular, and metabolic abnormalities. These changes trigger a complex biological response aimed at curtailing the physical damage and restoring homeostasis and functionality. Although a positive correlation exists between the type and severity of TBI and PTE, there is only an incomplete understanding of the time-dependent sequelae of TBI pathobiologies and their role in epileptogenesis. Determining the temporal profile of protein biomarkers in the blood (serum or plasma) and cerebrospinal fluid (CSF) can help to identify pathobiologies underlying the development of PTE, high-risk individuals, and disease modifying therapies. Here we review the pathobiological sequelae of TBI in the context of blood- and CSF-based protein biomarkers, their potential role in epileptogenesis, and discuss future directions aimed at improving the diagnosis and treatment of PTE.


Assuntos
Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Lesões Encefálicas Traumáticas/sangue , Lesões Encefálicas Traumáticas/líquido cefalorraquidiano , Epilepsia Pós-Traumática/sangue , Epilepsia Pós-Traumática/líquido cefalorraquidiano , Animais , Encéfalo/fisiopatologia , Lesões Encefálicas Traumáticas/complicações , Epilepsia Pós-Traumática/etiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...