Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-15, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38069610

RESUMO

The pathological levels of reactive oxygen species (ROS) and oxidative stress has been recognized as a critical driver for inflammatory disorders. Apoptosis signal-regulating kinase 1 (ASK1) has been reported to be activated by intracellular ROS and its inhibition leads to a down regulation of p38-and JNK-dependent signaling. ASK1 inhibitors are reported to have the potential to treat clinically important inflammatory pathologies including liver, pulmonary and renal disorders. In view of its biological and pathological significance, inhibition of ASK1 with small molecules has been pursued as an attractive strategy to combat human diseases such as non-alcoholic steatohepatitis (NASH). Despite several ASK1 inhibitors being developed, the failure in Phase 3 clinical trials of most advanced candidate selonsertib's, underscores to discover therapeutic agents with diverse chemical moiety. Here, by using structural pharmacophore and enumeration strategy on mining co-crystals of ASK1, different scaffolds were generated to enhance the chemical diversity keeping the critical molecular interaction in the catalytic site intact. A total of 15,772 compounds were generated from diverse chemical scaffolds and were evaluated using a virtual screening pipeline. Based on docking and MM-GBSA scores, a lead candidate, S3C-1-D424 was identified from top hits. A comparative molecular dynamics simulations (MD) of APO, Selonsertib and shortlisted potential candidates combined with pharmacokinetics profiling and thermodynamic analysis, demonstrating their suitability as potential ASK1 inhibitors to explore further for establishment towards hit-to-lead campaign.Communicated by Ramaswamy H. Sarma.

2.
Mol Biol Rep ; 51(1): 30, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38153581

RESUMO

BACKGROUND: Metachromatic leukodystrophy (MLD) is a rare lysosomal storage disorder caused by a deficiency of Arylsulfatase A (ARSA) enzyme activity. Its clinical manifestations include progressive motor and cognitive decline. ARSA gene mutations are frequent in MLD. METHODS AND RESULTS: In the present study, whole exome sequencing (WES) was employed to decipher the genetic cause of motor and cognitive decline in proband's of two consanguineous families from J&K (India). Clinical investigations using radiological and biochemical analysis revealed MLD-like features. WES confirmed a pathogenic variant in the ARSA gene. Molecular simulation dynamics was applied for structural characterization of the variant. CONCLUSION: We report the identification of a pathogenic missense variant (c.1174 C > T; p.Arg390Trp) in the ARSA gene in two cases of late infantile MLD from consanguineous families in Jammu and Kashmir, India. Our study utilized genetic analysis and molecular dynamics simulations to identify and investigate the structural consequences of this mutation. The molecular dynamics simulations revealed significant alterations in the structural dynamics, residue interactions, and stability of the ARSA protein harbouring the p.Arg390Trp mutation. These findings provide valuable insights into the molecular mechanisms underlying the pathogenicity of this variant in MLD.


Assuntos
Cerebrosídeo Sulfatase , Leucodistrofia Metacromática , Humanos , Cerebrosídeo Sulfatase/genética , Consanguinidade , Esterases , Índia , Leucodistrofia Metacromática/diagnóstico por imagem , Leucodistrofia Metacromática/genética , Simulação de Dinâmica Molecular
3.
Microbiol Spectr ; 11(4): e0282722, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37382527

RESUMO

Multiple processes exist in a cell to ensure continuous production of essential proteins either through cap-dependent or cap-independent translation processes. Viruses depend on the host translation machinery for viral protein synthesis. Therefore, viruses have evolved clever strategies to use the host translation machinery. Earlier studies have shown that genotype 1 hepatitis E virus (g1-HEV) uses both cap-dependent and cap-independent translation machineries for its translation and proliferation. Cap-independent translation in g1-HEV is driven by an 87-nucleotide-long RNA element that acts as a noncanonical, internal ribosome entry site-like (IRESl) element. Here, we have identified the RNA-protein interactome of the HEV IRESl element and characterized the functional significance of some of its components. Our study identifies the association of HEV IRESl with several host ribosomal proteins, demonstrates indispensable roles of ribosomal protein RPL5 and DHX9 (RNA helicase A) in mediating HEV IRESl activity, and establishes the latter as a bona fide internal translation initiation site. IMPORTANCE Protein synthesis is a fundamental process for survival and proliferation of all living organisms. The majority of cellular proteins are produced through cap-dependent translation. Cells also use a variety of cap-independent translation processes to synthesize essential proteins during stress. Viruses depend on the host cell translation machinery to synthesize their own proteins. Hepatitis E virus (HEV) is a major cause of hepatitis worldwide and has a capped positive-strand RNA genome. Viral nonstructural and structural proteins are synthesized through a cap-dependent translation process. An earlier study from our laboratory reported the presence of a fourth open reading frame (ORF) in genotype 1 HEV, which produces the ORF4 protein using a cap-independent internal ribosome entry site-like (IRESl) element. In the current study, we identified the host proteins that associate with the HEV-IRESl RNA and generated the RNA-protein interactome. Through a variety of experimental approaches, our data prove that HEV-IRESl is a bona fide internal translation initiation site.


Assuntos
Vírus da Hepatite E , Vírus da Hepatite E/genética , Sítios Internos de Entrada Ribossomal , Proteínas Ribossômicas/genética , RNA Viral/genética , RNA Viral/metabolismo
4.
J Biomol Struct Dyn ; 41(24): 15305-15319, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36907648

RESUMO

Interface mimicry, achieved by recognition of host-pathogen interactions, is the basis by which pathogen proteins can hijack the host machinery. The envelope (E) protein of SARS-CoV-2 is reported to mimic the histones at the BRD4 surface via establishing the structural mimicry; however, the underlying mechanism of E protein mimicking the histones is still elusive. To explore the mimics at dynamic and structural residual network level an extensive docking, and MD simulations were carried out in a comparative manner between complexes of H3-, H4-, E-, and apo-BRD4. We identified that E peptide is able to attain an 'interaction network mimicry', as its acetylated lysine (Kac) achieves orientation and residual fingerprint similar to histones, including water-mediated interactions for both the Kac positions. We identified Y59 of E, playing an anchor role to escort lysine positioning inside the binding site. Furthermore, the binding site analysis confirms that E peptide needs a higher volume, similar to the H4-BRD4 where both the lysine's (Kac5 and Kac8) can accommodate nicely, however, the position of Kac8 is mimicked by two additional water molecules other than four water-mediated bridging's, strengthening the possibility that E peptide could hijack host BRD4 surface. These molecular insights seem pivotal for mechanistic understanding and BRD4-specific therapeutic intervention. KEY POINTSMolecular mimicry is reported in hijacking and then outcompeting the host counterparts so that pathogens can rewire their cellular function by overcoming the host defense mechanism.The molecular recognition process is the basis of molecular mimicry. The E peptide of SARS-CoV-2 is reported to mimic host histone at the BRD4 surface by utilizing its C-terminally placed acetylated lysine (Kac63) to mimic the N-terminally placed acetylated lysine Kac5GGKac8 histone (H4) by interaction network mimicry identified through microsecond molecular dynamics (MD) simulations and post-processing extensive analysis.There are two steps to mimic: firstly, tyrosine residues help E to anchor at the BRD4 surface to position Kac and increase the volume of the pocket. Secondary, after positioning of Kac, a common durable interaction network N140:Kac5; Kac5:W1; W1:Y97; W1:W2; W2:W3; W3:W4; W4:P82 is established between Kac5, with key residues P82, Y97, N140, and four water molecules through water mediate bridge. Furthermore, the second acetylated lysine Kac8 position and its interaction as polar contact with Kac5 were also mimicked by E peptide through interaction network P82:W5; W5:Kac63; W5:W6; W6:Kac63.The binding event at BRD4/BD1 seems an induced-fit mechanism as a bigger binding site volume was identified at H4-BRD4 on which E peptide attains its better stability than H3-BRD4.We identified the tyrosine residue Y59 of E that acts like an anchor on the BRD4 surface to position Kac inside the pocket and attain the interaction network by using aromatic residues of the BRD4 surface.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Histonas , Humanos , Histonas/química , Proteínas Nucleares/química , SARS-CoV-2/metabolismo , Lisina , Fatores de Transcrição/química , Ligação Proteica , Peptídeos/metabolismo , Tirosina/metabolismo , Água/metabolismo , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular/metabolismo
5.
Molecules ; 28(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36903561

RESUMO

Mutations in homodimeric isocitrate dehydrogenase (IDH) enzymes at specific arginine residues result in the abnormal activity to overproduce D-2 hydroxyglutarate (D-2HG), which is often projected as solid oncometabolite in cancers and other disorders. As a result, depicting the potential inhibitor for D-2HG formation in mutant IDH enzymes is a challenging task in cancer research. The mutation in the cytosolic IDH1 enzyme at R132H, especially, may be associated with higher frequency of all types of cancers. So, the present work specifically focuses on the design and screening of allosteric site binders to the cytosolic mutant IDH1 enzyme. The 62 reported drug molecules were screened along with biological activity to identify the small molecular inhibitors using computer-aided drug design strategies. The designed molecules proposed in this work show better binding affinity, biological activity, bioavailability, and potency toward the inhibition of D-2HG formation compare to the reported drugs in the in silico approach.


Assuntos
Isocitrato Desidrogenase , Neoplasias , Humanos , Isocitrato Desidrogenase/genética , Regulação Alostérica , Glutaratos/química , Mutação , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia
6.
Microbiol Spectr ; 10(6): e0259222, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36314972

RESUMO

The complexity and duration of tuberculosis (TB) treatment contributes to the emergence of drug resistant tuberculosis (DR-TB) and drug-associated side effects. Alternate chemotherapeutic agents are needed to shorten the time and improve efficacy of current treatment. In this study, we have assessed the antitubercular activity of NSC19723, a benzaldehyde thiosemicarbazone molecule. NSC19723 is structurally similar to thiacetazone (TAC), a second-line anti-TB drug used to treat individuals with DR-TB. NSC19723 displayed better MIC values than TAC against Mycobacterium tuberculosis and Mycobacterium bovis BCG. In our checkerboard experiments, NSC19723 displayed better profiles than TAC in combination with known first-line and recently approved drugs. Mechanistic studies revealed that NSC19723 inhibits mycolic acid biosynthesis by targeting the HadABC complex. Computational studies revealed that the binding pocket of HadAB is similarly occupied by NSC19723 and TAC. NSC19723 also improved the efficacy of isoniazid in macrophages and mouse models of infection. Cumulatively, we have identified a benzaldehyde thiosemicarbazone scaffold that improved the activity of TB drugs in liquid cultures, macrophages, and mice. IMPORTANCE Mycobacterium tuberculosis, the causative agent of TB is among the leading causes of death among infectious diseases in humans. This situation has worsened due to the failure of BCG vaccines and the increased number of cases with HIV-TB coinfections and drug-resistant strains. Another challenge in the field is the lengthy duration of therapy for drug-sensitive and -resistant TB. Here, we have deciphered the mechanism of action of NSC19723, benzaldehyde thiosemicarbazone. We show that NSC19723 targets HadABC complex and inhibits mycolic acid biosynthesis. We also show that NSC19723 enhances the activity of known drugs in liquid cultures, macrophages, and mice. We have also performed molecular docking studies to identify the interacting residues of HadAB with NSC19723. Taken together, we demonstrate that NSC19723, a benzaldehyde thiosemicarbazone, has better antitubercular activity than thiacetazone.


Assuntos
Mycobacterium tuberculosis , Tioacetazona , Tiossemicarbazonas , Humanos , Animais , Camundongos , Tioacetazona/farmacologia , Tiossemicarbazonas/farmacologia , Vacina BCG , Ácidos Micólicos/farmacologia , Benzaldeídos/farmacologia , Simulação de Acoplamento Molecular , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico
7.
Comput Struct Biotechnol J ; 20: 3734-3754, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35891784

RESUMO

Protein seldom performs biological activities in isolation. Understanding the protein-protein interactions' physical rewiring in response to pathological conditions or pathogen infection can help advance our comprehension of disease etiology, progression, and pathogenesis, which allow us to explore the alternate route to control the regulation of key target interactions, timely and effectively. Nonalcoholic steatohepatitis (NASH) is now a global public health problem exacerbated due to the lack of appropriate treatments. The most advanced anti-NASH lead compound (selonsertib) is withdrawn, though it is able to inhibit its target Apoptosis signal-regulating kinase 1 (ASK1) completely, indicating the necessity to explore alternate routes rather than complete inhibition. Understanding the interaction fingerprints of endogenous regulators at the molecular level that underpin disease formation and progression may spur the rationale of designing therapeutic strategies. Based on our analysis and thorough literature survey of the various key regulators and PTMs, the current review emphasizes PPI-based drug discovery's relevance for NASH conditions. The lack of structural detail (interface sites) of ASK1 and its regulators makes it challenging to characterize the PPI interfaces. This review summarizes key regulators interaction fingerprinting of ASK1, which can be explored further to restore the homeostasis from its hyperactive states for therapeutics intervention against NASH.

8.
Int J Biol Macromol ; 209(Pt A): 1359-1367, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35469951

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 has a significant burden on the economy and healthcare around the world. Vaccines are the most effective tools to fight infectious diseases by containing the spread of the disease. The current vaccines against SARS-CoV-2 are mostly based on the spike protein of SARS-CoV-2, which is large and has many immune-dominant non-neutralizing epitopes that may effectively skew the antibody response towards non-neutralizing antibodies. Here, we have explored the possibility of immune-focusing the receptor binding motif (RBM) of the spike protein of SARS-CoV-2 that induces mostly neutralizing antibodies in natural infection or in vacinees. The result shows that the scaffolded RBM can bind to Angiotensin Converting Enzyme 2 (ACE2) although with low affinity and induces a strong antibody response in mice. The immunized sera can bind both, the receptor binding domain (RBD) and the spike protein, which holds the RBM in its natural context. Sera from the immunized mice showed robust interferon γ response but poor neutralization of SARS-CoV-2 suggesting presence of a predominant T cell epitope on scaffolded RBM. Together, we provide a strategy for inducing strong antigenic T cell response which could be exploited further for future vaccine designing and development against SARS-CoV-2 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Epitopos , Humanos , Camundongos , Pandemias/prevenção & controle , Ligação Proteica , Glicoproteína da Espícula de Coronavírus/química
9.
Protein Sci ; 31(9): e4398, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36629250

RESUMO

The ability to predict the intricate mechanistic behavior of ligands and associated structural determinants during protein-ligand (un)binding is of great practical importance in drug discovery. Ubiquitin specific protease-7 (USP7) is a newly emerging attractive cancer therapeutic target with bound allosteric inhibitors. However, none of the inhibitors have reached clinical trials, allowing opportunities to examine every aspect of allosteric modulation. The crystallographic insights reveal that these inhibitors have common properties such as chemical scaffolds, binding site and interaction fingerprinting. However, they still possess a broader range of binding potencies, ranging from 22 nM to 1,300 nM. Hence, it becomes more critical to decipher the structural determinants guiding the enhanced binding potency of the inhibitors. In this regard, we elucidated the atomic-level insights from both interacting partners, that is, protein-ligand perspective, and established the structure-activity link between USP7 inhibitors by using classical and advanced molecular dynamics simulations combined with linear interaction energy and molecular mechanics-Poisson Boltzmann surface area. We revealed the inhibitor potency differences by examining the contributions of chemical moieties and USP7 residues, the involvement of water-mediated interactions, and the thermodynamic landscape alterations. Additionally, the dissociation profiles aided in the establishment of a correlation between experimental potencies and structural determinants. Our study demonstrates the critical role of blocking loop 1 in allosteric inhibition and enhanced binding affinity. Comprehensively, our findings provide a constructive expansion of experimental outcomes and show the basis for varying binding potency using in-silico approaches. We expect this atomistic approach to be useful for effective drug design.


Assuntos
Simulação de Dinâmica Molecular , Peptidase 7 Específica de Ubiquitina , Sítios de Ligação , Ligantes , Ligação Proteica , Domínios Proteicos , Peptidase 7 Específica de Ubiquitina/antagonistas & inibidores
10.
Heliyon ; 5(10): e02709, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31687525

RESUMO

Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal blood disorder that manifests with hemolytic anemia, thrombosis, and peripheral blood cytopenias. The disease is caused by the deficiency of two glycosylphosphatidylinositols (GPI)-anchored proteins (CD55 and CD59) in the hemopoietic stem cells. The deficiency of GPI-anchored proteins has been associated with the somatic mutations in phosphatidylinositol glycan class A (PIGA). However, the mutations that do not cause PNH is associated with the multiple congenital anomalies-hypotonia-seizures syndrome 2 (MCAHS2). To best of our knowledge, no computational study has been performed to explore at an atomistic level the impact of PIGA missense mutations on the structure and dynamics of the protein. Therefore, we focused our study to provide molecular insights into the changes in protein structural dynamics upon mutation. In the initial step, screening for the most pathogenic mutations from the pool of publicly available mutations was performed. Further, to get a better understanding, pathogenic mutations were mapped to the modeled structure and the resulting protein was subjected to 100 ns molecular dynamics simulation. The residues close to C- and N-terminal regions of the protein were found to exhibit greater flexibility upon mutation. Our study suggests that four mutations are highly effective in altering the structural conformation and stability of the PIGA protein. Among them, mutant G48D was found to alter protein's structural dynamics to the greatest extent, both on a local and a global scale.

11.
Comput Biol Med ; 107: 161-171, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30831305

RESUMO

The nucleotide salvage pathway is used to recycle degraded nucleotides (purines and pyrimidines); one of the enzymes that helps to recycle purines is hypoxanthine guanine phosphoribosyl transferase 1 (HGPRT1). Therefore, defects in this enzyme lead to the accumulation of DNA and nucleotide lesions and hence replication errors and genetic disorders. Missense mutations in hypoxanthine phosphoribosyl transferase 1 (HPRT1) are associated with deficiencies such as Lesch-Nyhan disease and chronic gout, which have manifestations such as arthritis, neurodegeneration, and cognitive disorders. In the present study, we collected 88 non-synonymous single nucleotide polymorphisms (nsSNPs) from the UniProt, dbSNP, ExAC, and ClinVar databases. We used a series of sequence-based and structure-based in silico tools to prioritize and characterize the most pathogenic and stabilizing or destabilizing nsSNPs. Moreover, to obtain the structural impact of the pathogenic mutations, we mapped the mutations to the crystal structure of the HPRT protein. We further subjected these mutant proteins to a 50 ns molecular dynamics simulation (MDS). The MDS trajectory showed that all mutant proteins altered the structural conformation and dynamic behavior of the HPRT protein and corroborated its association with LND and gout. This study provides essential information regarding the use of HPRT protein mutants as potential targets for therapeutic development.


Assuntos
Gota , Hipoxantina Fosforribosiltransferase/deficiência , Hipoxantina Fosforribosiltransferase/genética , Síndrome de Lesch-Nyhan , Mutação de Sentido Incorreto/genética , Análise Mutacional de DNA , Gota/genética , Gota/metabolismo , Humanos , Hipoxantina Fosforribosiltransferase/química , Hipoxantina Fosforribosiltransferase/metabolismo , Síndrome de Lesch-Nyhan/genética , Síndrome de Lesch-Nyhan/metabolismo , Simulação de Dinâmica Molecular
12.
J Theor Biol ; 469: 163-171, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30844370

RESUMO

The G2019S substitution in the Leucine-rich repeat kinase 2 (LRRK2) is significantly associated with Parkinson's disease (PD). This substitution was identified in both familial and sporadic forms of PD with a higher frequency. Few computational studies have reported the impact of G2019S substitution on inhibitors of the kinase domain of LRRK2. However, no computational study deeply investigated the possible impact of the G2019S substitution on the kinase domain in its Apo conformation. Therefore, in this study, we used 200 ns molecular dynamic simulation using the GROMACS 5.1.4 package software to investigate the impact of the G2019S substitution on the structure of the kinase domain of LRRK2. Our results indicate that the G2019S substitution affects the dynamics and stability of LRRK2 by decreasing the flexibility and increasing the compactness of the kinase domain and showing its tendency to be in an active conformation for long time interval because of the high energy barrier between active and inactive conformation. This study predicts the molecular pathogenicity mechanism of the G2019S on patients with PD and provides a potential platform for developing therapeutics for patients with PD that harbor this amino acid substitution.


Assuntos
Substituição de Aminoácidos/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/química , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Simulação de Dinâmica Molecular , Doença de Parkinson/genética , Humanos , Ligação de Hidrogênio , Análise de Componente Principal , Domínios Proteicos , Estrutura Secundária de Proteína , Solventes , Termodinâmica
13.
Metab Brain Dis ; 33(5): 1443-1457, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29804243

RESUMO

The NF1 gene encodes for neurofibromin protein, which is ubiquitously expressed, but most highly in the central nervous system. Non-synonymous SNPs (nsSNPs) in the NF1 gene were found to be associated with Neurofibromatosis Type 1 disease, which is characterized by the growth of tumors along nerves in the skin, brain, and other parts of the body. In this study, we used several in silico predictions tools to analyze 16 nsSNPs in the RAS-GAP domain of neurofibromin, the K1444N (K1423N) mutation was predicted as the most pathogenic. The comparative molecular dynamic simulation (MDS; 50 ns) between the wild type and the K1444N (K1423N) mutant suggested a significant change in the electrostatic potential. In addition, the RMSD, RMSF, Rg, hydrogen bonds, and PCA analysis confirmed the loss of flexibility and increase in compactness of the mutant protein. Further, SASA analysis revealed exchange between hydrophobic and hydrophilic residues from the core of the RAS-GAP domain to the surface of the mutant domain, consistent with the secondary structure analysis that showed significant alteration in the mutant protein conformation. Our data concludes that the K1444N (K1423N) mutant lead to increasing the rigidity and compactness of the protein. This study provides evidence of the benefits of the computational tools in predicting the pathogenicity of genetic mutations and suggests the application of MDS and different in silico prediction tools for variant assessment and classification in genetic clinics.


Assuntos
Genes da Neurofibromatose 1 , Mutação , Neurofibromatose 1/genética , Neurofibromina 1/genética , Sequência de Aminoácidos , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica
14.
J Theor Biol ; 437: 305-317, 2018 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-29111421

RESUMO

X-linked Charcot-Marie-Tooth type 1 X (CMTX1) disease is a subtype of Charcot-Marie-Tooth (CMT), which is mainly caused by mutations in the GJB1 gene. It is also known as connexin 32 (Cx32) that leads to Schwann cell abnormalities and peripheral neuropathy. CMTX1 is considered as the second most common form of CMT disease. The aim of this study is to computationally predict the potential impact of different single amino acid substitutions at position 75 of Cx32, from arginine (R) to proline (P), glutamine (Q) and tryptophan (W). This position is known to be highly conserved among the family of connexin. To understand the structural and functional changes due to these single amino acid substitutions, we employed a homology-modeling technique to build the three-dimensional structure models for the native and mutant proteins. The protein structures were further embedded into a POPC lipid bilayer, inserted into a water box, and subjected to molecular dynamics simulation for 50 ns. Our results show that the mutants R75P, R75Q and R75W display variable structural conformation and dynamic behavior compared to the native protein. Our data proves useful in predicting the potential pathogenicity of the mutant proteins and is expected to serve as a platform for drug discovery for patients with CMT.


Assuntos
Substituição de Aminoácidos , Arginina/genética , Doença de Charcot-Marie-Tooth/genética , Conexinas/genética , Mutação de Sentido Incorreto , Sequência de Aminoácidos , Sítios de Ligação/genética , Biologia Computacional/métodos , Conexinas/química , Conexinas/metabolismo , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Simulação de Dinâmica Molecular , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Ligação Proteica , Conformação Proteica , Homologia de Sequência de Aminoácidos , Proteína beta-1 de Junções Comunicantes
15.
Metab Brain Dis ; 33(2): 589-600, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29047041

RESUMO

Charcot-Marie-Tooth disease (CMT) is one of the most commonly inherited congenital neurological disorders, affecting approximately 1 in 2500 in the US. About 80 genes were found to be in association with CMT. The phosphoribosyl pyrophosphate synthetase 1 (PRPS1) is an essential enzyme in the primary stage of de novo and salvage nucleotide synthesis. The mutations in the PRPS1 gene leads to X-linked Charcot-Marie-Tooth neuropathy type 5 (CMTX5), PRS super activity, Arts syndrome, X-linked deafness-1, breast cancer, and colorectal cancer. In the present study, we obtained 20 missense mutations from UniProt and dbSNP databases and applied series of comprehensive in silico prediction methods to assess the degree of pathogenicity and stability. In silico tools predicted four missense mutations (D52H, M115 T, L152P, and D203H) to be potential disease causing mutations. We further subjected the four mutations along with native protein to 50 ns molecular dynamics simulation (MDS) using Gromacs package. The resulting trajectory files were analyzed to understand the stability differences caused by the mutations. We used the Root Mean Square Deviation (RMSD), Radius of Gyration (Rg), solvent accessibility surface area (SASA), Covariance matrix, Principal Component Analysis (PCA), Free Energy Landscape (FEL), and secondary structure analysis to assess the structural changes in the protein upon mutation. Our study suggests that the four mutations might affect the PRPS1 protein function and stability of the structure. The proposed study may serve as a platform for drug repositioning and personalized medicine for diseases that are caused by the PRPS1 deficiency.


Assuntos
Ataxia/genética , Doença de Charcot-Marie-Tooth/genética , Surdocegueira/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Mutação/genética , Ribose-Fosfato Pirofosfoquinase/deficiência , Sequência de Aminoácidos , Doença de Charcot-Marie-Tooth/diagnóstico , Humanos , Fenótipo , Ribose-Fosfato Pirofosfoquinase/genética
16.
J Cell Biochem ; 118(11): 3730-3743, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28374912

RESUMO

Mutations in the Peripheral Myelin Protein 22 (PMP22) leads to Charcot Marie Tooth type 1A (CMT1A, a subtype of CMT1) disease which is the most common inherited neuropathy of peripheral nervous system. In the present study, we used series of in silico prediction methods to screen and identify the most deleterious non-synonymous SNPs (nsSNPs) in PMP22 gene. Out of 48 nsSNPs, five nsSNPs (L16P, L19P, T23R, W28R, and L147R) associated with PMP22 were predicted to be highly deleterious and destabilizing the protein. To explore the possible structure-function relationship, we employed abinitio modeling strategy using the CABS-fold server to predict the three-dimensional structure models in the absence of crystallized structures in PMP22 protein. We used Cytoscape 3.4.0 plugin Integrated Complex Traits Networks interface (iCTNet) to identify the probable drug-gene interactions in PMP22 gene. A total of 22 chemical compounds yielded from the aforementioned tool was subjected to Molinspiration and OSIRIS program to screen and identify the potent drug molecules for further analysis. Five chemical compounds with excellent bioavailability and drug relevant property were selected for molecular docking simulation study. We modeled five mutant structures at their corresponding positions and performed molecular docking simulation analysis using AutoDock Tools (ADT) version 1.5.6 and ArgusLab 4.0.1 tools to analyze their interaction patterns and binding efficacy. Based on the results obtained from the computational study, we predict that estradiol could be a potential drug of choice for treating patients with CMT1A which needs larger attention from biologists in the near future. J. Cell. Biochem. 118: 3730-3743, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Doença de Charcot-Marie-Tooth , Estradiol/química , Simulação de Acoplamento Molecular , Proteínas da Mielina/química , Proteínas da Mielina/genética , Polimorfismo de Nucleotídeo Único , Doença de Charcot-Marie-Tooth/tratamento farmacológico , Doença de Charcot-Marie-Tooth/genética , Estradiol/uso terapêutico , Humanos , Proteínas da Mielina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...