Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Therm Biol ; 99: 103022, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34420649

RESUMO

Upper thermal limits are considered a key determinant of a population's ability to persist in the face of extreme heat events. However, these limits differ considerably among individuals within a population, and the mechanisms underlying this differential sensitivity are not well understood. Upper thermal tolerance in aquatic ectotherms is thought to be determined by a mismatch between oxygen supply and the increased metabolic demands associated with warmer waters. As such, tolerance is expected to decline during reproduction given the heightened oxygen demand for gamete production and maintenance. Among live-bearing species, upper thermal tolerance of reproductive adults may decline even further after fertilization due to the cost of meeting the increasing oxygen demands of developing embryos. We examined the upper thermal tolerance of live-bearing female Trinidadian guppies at different stages of reproduction and found that critical thermal maximum was similar during the egg yolking and early embryos stage but then declined by almost 0.5 °C during late pregnancy when oxygen demands are the greatest. These results are consistent with the hypothesis that oxygen limitation sets thermal limits and show that reproduction is associated with a decline in upper thermal tolerance.


Assuntos
Peixes/fisiologia , Termotolerância , Animais , Mudança Climática , Feminino , Gravidez , Reprodução
2.
G3 (Bethesda) ; 11(2)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33693600

RESUMO

Programmed cell death and cell corpse clearance are an essential part of organismal health and development. Cell corpses are often cleared away by professional phagocytes such as macrophages. However, in certain tissues, neighboring cells known as nonprofessional phagocytes can also carry out clearance functions. Here, we use the Drosophila melanogaster ovary to identify novel genes required for clearance by nonprofessional phagocytes. In the Drosophila ovary, germline cells can die at multiple time points. As death proceeds, the epithelial follicle cells act as phagocytes to facilitate the clearance of these cells. We performed an unbiased kinase screen to identify novel proteins and pathways involved in cell clearance during two death events. Of 224 genes examined, 18 demonstrated severe phenotypes during developmental death and clearance while 12 demonstrated severe phenotypes during starvation-induced cell death and clearance, representing a number of pathways not previously implicated in phagocytosis. Interestingly, it was found that several genes not only affected the clearance process in the phagocytes, but also non-autonomously affected the process by which germline cells died. This kinase screen has revealed new avenues for further exploration and investigation.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Apoptose , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Feminino , Células Germinativas/metabolismo , Folículo Ovariano/metabolismo , Ovário/metabolismo , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...