Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38708524

RESUMO

Ketone bodies (acetoacetate and ß-hydroxybutyrate) are oxidized in skeletal muscle mainly during fasting as an alternative source of energy to glucose. Prior studies suggest that there is a negative relationship between increased muscle ketolysis and muscle glucose metabolism in mice with obesity and/or type 2 diabetes. Therefore, we investigated the connection between increased ketone body exposure and muscle glucose metabolism by measuring the effect of a 3-hour exposure to ketone bodies on glucose uptake in differentiated L6 myotubes. We showed that exposure to acetoacetate at a typical concentration (0.2 mM) resulted in increased basal glucose uptake in L6 myotubes, which was dependent on increased membrane GLUT4 translocation. Basal and insulin-stimulated glucose uptake was also increased with a concentration of acetoacetate reflective of diabetic ketoacidosis or a ketogenic diet (1 mM). We found that ß-hydroxybutyrate had a variable effect on basal glucose uptake, in that a racemic mixture of the two ß-hydroxybutyrate enantiomers (D and L) appeared to decrease basal glucose uptake, while 3 mM D-ß-hydroxybutyrate alone increased basal glucose uptake. However, the effects of the ketone bodies individually were not observed when acetoacetate was present in combination with ß-hydroxybutyrate. These results provide insight that will help elucidate the effect of ketone bodies in the context of specific metabolic diseases and nutritional states (e.g., type 2 diabetes and ketogenic diets).

2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732106

RESUMO

Type 2 diabetes (T2D) is characterized by muscle metabolic dysfunction that exercise can minimize, but some patients do not respond to an exercise intervention. Myokine secretion is intrinsically altered in patients with T2D, but the role of myokines in exercise resistance in this patient population has never been studied. We sought to determine if changes in myokine secretion were linked to the response to an exercise intervention in patients with T2D. The participants followed a 10-week aerobic exercise training intervention, and patients with T2D were grouped based on muscle mitochondrial function improvement (responders versus non-responders). We measured myokines in serum and cell-culture medium of myotubes derived from participants pre- and post-intervention and in response to an in vitro model of muscle contraction. We also quantified the expression of genes related to inflammation in the myotubes pre- and post-intervention. No significant differences were detected depending on T2D status or response to exercise in the biological markers measured, with the exception of modest differences in expression patterns for certain myokines (IL-1ß, IL-8, IL-10, and IL-15). Further investigation into the molecular mechanisms involving myokines may explain exercise resistance with T2D; however, the role in metabolic adaptations to exercise in T2D requires further investigation.


Assuntos
Diabetes Mellitus Tipo 2 , Exercício Físico , Fibras Musculares Esqueléticas , Treinamento Resistido , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Masculino , Exercício Físico/fisiologia , Pessoa de Meia-Idade , Feminino , Fibras Musculares Esqueléticas/metabolismo , Interleucina-1beta/metabolismo , Interleucina-1beta/sangue , Citocinas/metabolismo , Citocinas/sangue , Interleucina-8/metabolismo , Interleucina-8/sangue , Interleucina-10/metabolismo , Interleucina-10/sangue , Idoso , Interleucina-15/metabolismo , Interleucina-15/sangue , Terapia por Exercício/métodos , Contração Muscular , Músculo Esquelético/metabolismo , Miocinas
4.
Nutrients ; 15(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37836512

RESUMO

In recent years, ketogenic diets and ketone supplements have increased in popularity, particularly as a mechanism to improve exercise performance by modifying energetics. Since the skeletal muscle is a major metabolic and locomotory organ, it is important to take it into consideration when considering the effect of a dietary intervention, and the impact of physical activity on the body. The goal of this review is to summarize what is currently known and what still needs to be investigated concerning the relationship between ketone body metabolism and exercise, specifically in the skeletal muscle. Overall, it is clear that increased exposure to ketone bodies in combination with exercise can modify skeletal muscle metabolism, but whether this effect is beneficial or detrimental remains unclear and needs to be further interrogated before ketogenic diets or exogenous ketone supplementation can be recommended.


Assuntos
Dieta Cetogênica , Cetonas , Cetonas/metabolismo , Exercício Físico/fisiologia , Músculo Esquelético/metabolismo , Suplementos Nutricionais
7.
Physiol Rep ; 11(5): e15634, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36905198

RESUMO

Low-grade inflammation is central to coronary artery disease (CAD) and type 2 diabetes (T2D) and is reduced by exercise training. The objective of this study was to compare the anti-inflammatory potential of moderate-to-vigorous intensity continuous training (MICT) and high-intensity interval training (HIIT) in patients with CAD with or without T2D. The design and setting of this study is based on a secondary analysis of registered randomized clinical trial NCT02765568. Male patients with CAD were randomly assigned to either MICT or HIIT, with subgroups divided according to T2D status (non-T2D-HIIT n = 14 and non-T2D-MICT n = 13; T2D-HIIT n = 6 and T2D-MICT n = 5). The intervention was a 12-week cardiovascular rehabilitation program consisting of either MICT or HIIT (twice weekly sessions) and circulating cytokines measured pre- and post-training as inflammatory markers. The co-occurrence of CAD and T2D was associated with increased plasma IL-8 (p = 0.0331). There was an interaction between T2D and the effect of the training interventions on plasma FGF21 (p = 0.0368) and IL-6 (p = 0.0385), which were further reduced in the T2D groups. An interaction between T2D, training modalities, and the effect of time (p = 0.0415) was detected for SPARC, with HIIT increasing circulating concentrations in the control group, while lowering them in the T2D group, and the inverse occurring with MICT. The interventions also reduced plasma FGF21 (p = 0.0030), IL-6 (p = 0.0101), IL-8 (p = 0.0087), IL-10 (p < 0.0001), and IL-18 (p = 0.0009) irrespective of training modality or T2D status. HIIT and MICT resulted in similar reductions in circulating cytokines known to be increased in the context of low-grade inflammation in CAD patients, an effect more pronounced in patients with T2D for FGF21 and IL-6.


Assuntos
Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Treinamento Intervalado de Alta Intensidade , Humanos , Masculino , Projetos Piloto , Citocinas , Interleucina-6 , Interleucina-8 , Exercício Físico , Treinamento Intervalado de Alta Intensidade/métodos , Inflamação
8.
Front Physiol ; 13: 1040809, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36479347

RESUMO

Myokines are peptides and proteins secreted by skeletal muscle cells, into the interstitium, or in the blood. Their regulation may be dependent or independent of muscle contraction to induce a variety of metabolic effects. Numerous myokines have been implicated in influencing energy metabolism via AMP-activated protein kinase (AMPK) signalling. As AMPK is centrally involved in glucose and lipid metabolism, it is important to understand how myokines influence its signalling, and vice versa. Such insight will better elucidate the mechanism of metabolic regulation during exercise and at rest. This review encompasses the latest research conducted on the relationship between AMPK signalling and myokines within skeletal muscles via autocrine or paracrine signalling.

9.
Food Chem Toxicol ; 170: 113505, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36328215

RESUMO

Exposure to bisphenol A (BPA) is associated with insulin resistance and type 2 diabetes (T2D). Since muscle insulin resistance is the primary defect in T2D, we aimed to determine whether BPA alters glucose metabolism in L6 muscle cells. L6 or L6-GLUT4-myc cells were exposed to 1-104 nM BPA or the vehicle (0.1% DMSO) for 7 days. BPA at 103-104 nM significantly decreased the levels of the muscle differentiation markers troponin- T and myosin heavy chain 3. Insulin-stimulated phosphorylation of Akt and GSK3, insulin-stimulated glucose uptake, and insulin-stimulated GLUT4 translocation were significantly decreased with 103-104 nM BPA. Basal glucose uptake and glycolysis (extracellular acidification rates measured by Seahorse XFe96) were increased with 103-104 nM BPA. Levels of ROS detoxifying enzymes were increased with BPA >10 nM, while catalase activity was increased with 103-104 nM BPA. However, BPA did not induce oxidative stress (measured by protein carbonylation and lipid peroxidation) nor mitochondrial dysfunction. The effects of BPA on basal glucose uptake and catalase activity, but not on insulin sensitivity, were restored when estrogen receptors (ERs) were inhibited with ICI. These findings suggest that high concentrations of BPA increase muscle glucose uptake through the ERs but induce insulin resistance through another pathway.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Glucose/metabolismo , Receptores de Estrogênio/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Catalase/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Insulina/metabolismo , Fosforilação , Transportador de Glucose Tipo 4/metabolismo
10.
Toxicol Rep ; 9: 487-498, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35345859

RESUMO

Under insulin-stimulated conditions, skeletal muscle is the largest glucose consumer in the body. Mitochondrial dysfunction and damage to this tissue from oxidative stress are linked to the pathogenesis of type 2 diabetes. Environmental exposure to dichlorodiphenyltrichloroethane (DDT) and its metabolite, 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE), has been associated with the incidence of type 2 diabetes as well as altered oxidative stress and mitochondrial dysfunction in non-muscle tissues. We hypothesized that energy metabolism and insulin sensitivity in skeletal muscle will be altered with exposure to DDT and DDE. In this pilot study, mitochondrial function was measured in permeabilized muscle fibers from Sprague-Dawley rats after one week of exposure to a single injection of DDT (40 µg/kg), a dose comparable to DDT levels in the diets of the Inuit of Northern Canada. The levels of oxidative phosphorylation chain complexes and ROS detoxification enzymes were measured in muscle tissue from these specimens. This acute in vivo exposure to DDT decreased muscle mitochondrial function by 45% without affecting the levels of mitochondrial oxidative phosphorylation chain complexes nor levels of ROS detoxification enzymes. To isolate the effects of DDT and DDE exposure on muscle, L6 myotubes were exposed to DDT or DDE (0, 10, 100, 1000, 10 000 nM) for 24 h. Only very high concentrations of DDT and DDE (1 000 - 10 000 nM) altered maximal respiration with only DDT altering basal glucose uptake in L6 myotubes. This did not alter levels of ROS detoxification enzymes or malondialdehyde (MDA) in L6 myotubes. Altogether, acute exposure to environmentally relevant doses of DDT resulted in muscle mitochondrial dysfunction in vivo in rats, but not when muscle cells were directly exposed to the pollutant or its metabolite.

11.
Cell Metab ; 33(5): 939-956.e8, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33770509

RESUMO

Poor maternal diet increases the risk of obesity and type 2 diabetes in offspring, adding to the ever-increasing prevalence of these diseases. In contrast, we find that maternal exercise improves the metabolic health of offspring, and here, we demonstrate that this occurs through a vitamin D receptor-mediated increase in placental superoxide dismutase 3 (SOD3) expression and secretion. SOD3 activates an AMPK/TET signaling axis in fetal offspring liver, resulting in DNA demethylation at the promoters of glucose metabolic genes, enhancing liver function, and improving glucose tolerance. In humans, SOD3 is upregulated in serum and placenta from physically active pregnant women. The discovery of maternal exercise-induced cross talk between placenta-derived SOD3 and offspring liver provides a central mechanism for improved offspring metabolic health. These findings may lead to novel therapeutic approaches to limit the transmission of metabolic disease to the next generation.


Assuntos
Exercício Físico , Placenta/metabolismo , Superóxido Dismutase/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Células Cultivadas , Desmetilação do DNA , Dieta Hiperlipídica , Feminino , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Gravidez , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores de Calcitriol/metabolismo , Transdução de Sinais , Superóxido Dismutase/genética
13.
Environ Health Perspect ; 128(10): 107002, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33026256

RESUMO

BACKGROUND: Exposure to coplanar polychlorinated biphenyls (PCBs) is linked to the development of insulin resistance. Previous studies suggested PCB126 alters muscle mitochondrial function through an indirect mechanism. Given that PCBs are stored in fat, we hypothesized that PCB126 alters adipokine secretion, which in turn affects muscle metabolism. OBJECTIVES: We determined a) the impacts of PCB126 exposure on adipocyte cytokine/adipokine secretion in vitro; b) whether adipocyte-derived factors alter glucose metabolism and mitochondrial function in myotubes when exposed to PCB126; and c) whether preestablished insulin resistance alters the metabolic responses of adipocytes exposed to PCB126 and the communication between adipocytes and myotubes. METHODS: 3T3-L1 adipocytes were exposed to PCB126 (1-100 nM) in two insulin sensitivity conditions [insulin sensitive (IS) and insulin resistant (IR) adipocytes], followed by the measurement of secreted adipokines, mitochondrial function, and insulin-stimulated glucose uptake. Communication between adipocytes and myotubes was reproduced by exposing C2C12 myotubes or mouse primary myotubes to conditioned medium (CM) derived from IS or IR 3T3-L1 adipocytes exposed to PCB126. Mitochondrial function and insulin-stimulated glucose uptake were then determined in myotubes. RESULTS: IR 3T3-L1 adipocytes treated with PCB126 had significantly higher adipokine (adiponectin, IL-6, MCP-1, TNF-α) secretion and lower mitochondrial function, glucose uptake, and glycolysis. However, PCB126 did not significantly alter these parameters in IS adipocytes. Altered energy metabolism in IR 3T3-L1 adipocytes was linked to lower phosphorylation of AMP-activated protein kinase (p-AMPK) and higher superoxide dismutase 2 levels, an enzyme involved in reactive oxygen species detoxification. Myotubes exposed to the CM from PCB126-treated IR adipocytes had lower glucose uptake, with no alteration in glycolysis or mitochondrial function. Interestingly, p-AMPK levels were higher in myotubes exposed to the CM of PCB126-treated IR adipocytes. DISCUSSION: Taken together, these data suggest that increased adipokine secretion from IR adipocytes exposed to PCB126 might explain impaired glucose uptake in myotubes. https://doi.org/10.1289/EHP7058.


Assuntos
Tecido Adiposo/fisiologia , Substâncias Perigosas/toxicidade , Músculos/fisiologia , Bifenilos Policlorados/toxicidade , Células 3T3-L1 , Adipócitos , Adiponectina , Animais , Comunicação , Metabolismo Energético , Insulina , Resistência à Insulina , Camundongos , Mitocôndrias , Fibras Musculares Esqueléticas , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Testes de Toxicidade/métodos
14.
Toxicology ; 445: 152600, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32976960

RESUMO

PURPOSE: The environmental endocrine disruptors, bisphenol A (BPA) and bisphenol S (BPS) are associated with the development of type 2 diabetes. We aim to study the effects of BPA or BPS exposure on adipokine expression in human adipose tissue and on adipocyte glucose uptake. METHODS: Human subcutaneous adipose tissue was treated for 24 or 72 h with environmentally-relevant and supraphysiological concentrations of BPA or BPS (1-104 nM). Following exposure, gene expression of proinflammatory cytokines, adipokines, and estrogen receptors was measured in adipose tissue. Glucose uptake and the insulin signalling pathway were analyzed in isolated adipocytes following adipose tissue culture with BPA for 24 h. RESULTS: Adipose tissue treated with BPA for 24 h had reduced expression of the proinflammatory genes (IL6, IL1B, TNFA) and adipokines (ADIPOQ, FABP4). BPA and BPS had no effect on the expression of other proinflammatory genes (IL33), adipokines (LEP), or receptors (ESR1, ESR2) after 72-h exposure. Adipose tissue treated with environmentally-relevant concentrations of BPA for 24 h had reduced insulin-stimulated glucose uptake, without altered gene and protein levels of key insulin signalling pathway markers. CONCLUSIONS: We found that human adipose tissue treated with environmentally-relevant concentrations of BPA for 24 h, but not BPS, reduced expression of proinflammatory genes and adipokines. Furthermore, BPA reduced glucose uptake in adipocytes independently of insulin signalling. Such mechanisms can contribute to the development of insulin resistance associated with BPA exposure.


Assuntos
Adipocinas/antagonistas & inibidores , Tecido Adiposo/efeitos dos fármacos , Compostos Benzidrílicos/toxicidade , Estrogênios não Esteroides/toxicidade , Glucose/antagonistas & inibidores , Fenóis/farmacologia , Fenóis/toxicidade , Sulfonas/farmacologia , Adipocinas/biossíntese , Tecido Adiposo/metabolismo , Adulto , Idoso , Sobrevivência Celular , Relação Dose-Resposta a Droga , Feminino , Expressão Gênica , Glucose/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
15.
Cell Metab ; 31(5): 909-919.e8, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32275862

RESUMO

Perturbations in carbohydrate, lipid, and protein metabolism contribute to obesity-induced type 2 diabetes (T2D), though whether alterations in ketone body metabolism influence T2D pathology is unknown. We report here that activity of the rate-limiting enzyme for ketone body oxidation, succinyl-CoA:3-ketoacid-CoA transferase (SCOT/Oxct1), is increased in muscles of obese mice. We also found that the diphenylbutylpiperidine pimozide, which is approved to suppress tics in individuals with Tourette syndrome, is a SCOT antagonist. Pimozide treatment reversed obesity-induced hyperglycemia in mice, which was phenocopied in mice with muscle-specific Oxct1/SCOT deficiency. These actions were dependent on pyruvate dehydrogenase (PDH/Pdha1) activity, the rate-limiting enzyme of glucose oxidation, as pimozide failed to alleviate hyperglycemia in obese mice with a muscle-specific Pdha1/PDH deficiency. This work defines a fundamental contribution of enhanced ketone body oxidation to the pathology of obesity-induced T2D, while suggesting pharmacological SCOT inhibition as a new class of anti-diabetes therapy.


Assuntos
Hiperglicemia/tratamento farmacológico , Hipoglicemiantes/farmacologia , Cetonas/antagonistas & inibidores , Músculo Esquelético/efeitos dos fármacos , Obesidade/tratamento farmacológico , Pimozida/farmacologia , Animais , Dieta/efeitos adversos , Hiperglicemia/induzido quimicamente , Cetonas/metabolismo , Masculino , Camundongos , Músculo Esquelético/metabolismo , Obesidade/induzido quimicamente , Oxirredução , Estreptozocina
16.
Front Physiol ; 11: 18, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32132925

RESUMO

Exercise and physical activity levels influence myokine release from skeletal muscle and contribute to circulating concentrations. Indeed, many myokines, including interleukin (IL)-6, IL-15, secreted protein acidic rich in cysteine (SPARC), and fibroblast growth factor (FGF) 21 are higher in the circulation after an exercise bout. Since these peptides modulate muscle metabolism and can also be targeted toward other tissues to induce adaptations to energy demand, they are of great interest regarding metabolic diseases. Therefore, we set out to compare, in six women with obesity (BMI ≥30 kg/m2) and five healthy women (BMI 22-29.9 kg/m2), the effect of an acute bout of moderate-intensity, continuous cycling exercise (60 min, 60% VO2peak) on the release of myokines (IL-6, IL-8, IL-10, IL-13, IL-15, SPARC, and FGF21) in plasma for a 24-h time course. We found that plasma IL-8 and SPARC levels were reduced in the group of women with obesity, whereas plasma IL-13 concentrations were elevated in comparison to non-obese women both before and after the exercise bout. We also found that plasma FGF21 concentration during the 24 h following the bout of exercise was regulated differently in the non-obese in comparison to obese women. Plasma concentrations of FGF21, IL-6, IL-8, IL-15, and IL-18 were regulated by acute exercise. Our results confirm the results of others concerning exercise regulation of circulating myokines while providing insight into the time course of myokine release in circulation after an acute exercise bout and the differences in circulating myokines after exercise in women with or without obesity.

17.
Mol Cell Endocrinol ; 499: 110580, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31536778

RESUMO

Bisphenol A (BPA) is an environmental pollutant that has been associated with adverse health effects including skeletal muscle insulin resistance, a major contributor to the pathogenesis of type 2 diabetes (T2D). Early mitochondrial dysfunction and oxidative stress are linked to impaired glucose metabolism in skeletal muscle. In this study, we investigated the effects of BPA on skeletal muscle mitochondrial function and insulin sensitivity. L6 myotubes were treated with BPA (1 nM-105 nM) during the last 24 h of differentiation. Following exposure to 105 nM of BPA, resting and maximal oxygen consumption rates were decreased, whereas mitochondrial proton leak was increased. Overall metabolic activity, measured by redox ability, was decreased in L6 myotubes exposed to 105 nM of BPA. At this concentration, insulin-stimulated glucose uptake was increased, which corresponded to an increased phosphorylation of the insulin signaling protein Akt, and increased glycolysis measured by extracellular acidification rate (ECAR). Acute BPA exposure did not alter levels of oxidative stress markers in muscle cells, but significantly increased mitochondrial proton leak, which is known to be involved in decreased ROS production. The effects of BPA on glucose uptake, but not mitochondrial function, were reversed by the use of an estrogen receptor antagonist. These results suggest that acute exposure of L6 myotubes at only high concentrations of BPA alters glucose metabolism, which is likely a compensatory response to reduced mitochondrial energy production capacity.


Assuntos
Compostos Benzidrílicos/efeitos adversos , Glucose/metabolismo , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/citologia , Fenóis/efeitos adversos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Resistência à Insulina , Mitocôndrias/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
18.
Front Physiol ; 10: 1188, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31649549

RESUMO

BACKGROUND: It is recommended that women accumulate 150-min of weekly moderate-intensity physical activity (MPA) when pregnant. Engaging in regular physical activity (PA) confers many health benefits to both the mother and the fetus. However, the molecular mechanisms by which these health benefits are bestowed are not well understood. One potential factor that may be contributing to the observed benefits is myokines, which are small peptides secreted by skeletal muscles. In the non-pregnant population, myokines are believed to be involved in the molecular mechanisms resulting from PA. The objective of this study was to characterize and compare the myokine profile of pregnant and non-pregnant women, after an acute bout of MPA. METHODS: Pregnant (n = 13) and non-pregnant (n = 17) women were recruited from the Ottawa region to undergo a treadmill walking session at moderate-intensity (40-60% heart rate reserve). Pre- and post-exercise serum samples were taken, and a set of 15 myokines were analyzed although only 10 were detected. IL-6 was analyzed using a high-sensitivity assay, while FGF21, EPO, BDNF, Fractalkine, IL-15, SPARC, FABP-3, FSTL-1, and oncostatin were analyzed using various multiplex assays. RESULTS: The pregnant and non-pregnant groups did not differ in terms of age, height, non/pre-pregnancy weight, BMI, and resting heart rate. Baseline levels of EPO and oncostatin were higher in the pregnant group while FGF21 was higher in the non-pregnant group. Circulating levels of three myokines, FGF21, EPO, and IL-15 significantly increased in response to the acute exercise in the pregnant group. Non-pregnant women exhibited an increase in three myokines, FABP-3, FSTL-1, and oncostatin, while one myokine, EPO, decreased post-exercise. SPARC, fractalkine and BDNF were shown to increase post-exercise regardless of pregnancy status while the response for BDNF was more pronounced in the non-pregnant group. CONCLUSION: This is the first study examining myokine response following an acute bout of PA in pregnancy. Moderate intensity PA, which is recommended during pregnancy, elicited an increase in four myokines post-compared to pre-exercise in the pregnant group. Further research is warranted to understand the role of myokines in pregnancy.

19.
Front Public Health ; 7: 35, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30891439

RESUMO

Background: Type 2 diabetes (T2D)-related depression has a significant impact on quality of life and leads to greater morbidity and mortality. Current educational and treatment programs for T2D rarely include a specific depression-prevention component, focusing largely on remediating depressive symptoms that have reached clinical levels. Objective: Given the vast field of research on the association between T2D and depression, and the unknown status of prevention efforts for the latter, the goal of this scoping review was to conduct a synopsis of intervention strategies specifically targeting the prevention of depression among adults with T2D. Eligibility Criteria: (1) participants aged 18 and over with T2D; (2) experimental and quasi-experimental designs (3) intervention strategies seeking to prevent the onset or worsening of (non-clinical) depressive symptoms; (4) a valid measure of depressive symptoms; (5) full-text articles available in English or French. Sources of Evidence: Databases including Medline, PubMed, and SCOPUS were searched between 2000 and 2018 resulting in 4,219 potential articles. Charting Methods: This review was conducted in-line with the current methodological framework for scoping reviews. Titles, abstract and full text articles were screened independently and in duplicate. A narrative analysis was conducted to synthesize study characteristics and the nature of intervention strategies and components. Results: Twelve studies were identified with the primary aim of preventing the incidence of depressive symptoms or improving non-clinical depression levels. Individual and group-based approaches included educational interventions incorporating diabetes self-management, problem-solving, and resilience-focused approaches, emotion-targeted techniques as well as alternative interventions. Self-monitoring, home practices, and motivational interviewing were common elements. Conclusions: This review lays the groundwork for future studies seeking to develop, validate, and improve prevention strategies targeting the diabetes-depression comorbidity. More studies over longer periods and with larger samples are needed to capture the effects of prevention efforts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...