Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Pers Med ; 14(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38793065

RESUMO

Radiotherapy is focused on the tumor but also reaches healthy tissues, causing toxicities that are possibly related to genomic factors. In this context, radiogenomics can help reduce the toxicity, increase the effectiveness of radiotherapy, and personalize treatment. It is important to consider the genomic profiles of populations not yet studied in radiogenomics, such as the indigenous Amazonian population. Thus, our objective was to analyze important genes for radiogenomics, such as ATM, TGFB1, RAD51, AREG, XRCC4, CDK1, MEG3, PRKCE, TANC1, and KDR, in indigenous people and draw a radiogenomic profile of this population. The NextSeq 500® platform was used for sequencing reactions; for differences in the allelic frequency between populations, Fisher's Exact Test was used. We identified 39 variants, 2 of which were high impact: 1 in KDR (rs41452948) and another in XRCC4 (rs1805377). We found four modifying variants not yet described in the literature in PRKCE. We did not find any variants in TANC1-an important gene for personalized medicine in radiotherapy-that were associated with toxicities in previous cohorts, configuring a protective factor for indigenous people. We identified four SNVs (rs664143, rs1801516, rs1870377, rs1800470) that were associated with toxicity in previous studies. Knowing the radiogenomic profile of indigenous people can help personalize their radiotherapy.

2.
Viruses ; 16(3)2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38543725

RESUMO

Coronavirus disease 2019 (COVID-19) is an infection caused by SARS-CoV-2. Genome-wide association studies (GWASs) have suggested a strong association of genetic factors with the severity of the disease. However, many of these studies have been completed in European populations, and little is known about the genetic variability of indigenous peoples' underlying infection by SARS-CoV-2. The objective of the study is to investigate genetic variants present in the genes AQP3, ARHGAP27, ELF5L, IFNAR2, LIMD1, OAS1 and UPK1A, selected due to their association with the severity of COVID-19, in a sample of indigenous people from the Brazilian Amazon in order to describe potential new and already studied variants. We performed the complete sequencing of the exome of 64 healthy indigenous people from the Brazilian Amazon. The allele frequency data of the population were compared with data from other continental populations. A total of 66 variants present in the seven genes studied were identified, including a variant with a high impact on the ARHGAP27 gene (rs201721078) and three new variants located in the Amazon Indigenous populations (INDG) present in the AQP3, IFNAR2 and LIMD1 genes, with low, moderate and modifier impact, respectively.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/genética , SARS-CoV-2/genética , Estudo de Associação Genômica Ampla , Frequência do Gene , Povos Indígenas/genética , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas com Domínio LIM
3.
J Pers Med ; 13(9)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37763132

RESUMO

Gastric Cancer is a disease associated with environmental and genetic changes, becoming one of the most prevalent cancers around the world and with a high incidence in Brazil. However, despite being a highly studied neoplastic type, few efforts are aimed at populations with a unique background and genetic profile, such as the indigenous peoples of the Brazilian Amazon. Our study characterized the molecular profile of five genes associated with the risk of developing gastric cancer by sequencing the complete exome of 64 indigenous individuals belonging to 12 different indigenous populations in the Amazon. The analysis of the five genes found a total of 207 variants, of which 15 are new in our indigenous population, and among these are two with predicted high impact, present in the TTN and CDH1 genes. In addition, at least 20 variants showed a significant difference in the indigenous population in comparison with other world populations, and three are already associatively related to some type of cancer. Our study reaffirms the unique genetic profile of the indigenous population of the Brazilian Amazon and allows us to contribute to the conception of early diagnosis of complex diseases such as cancer, improving the quality of life of individuals potentially suffering from the disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...