Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 9: 1173, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29896197

RESUMO

Recombinant filamentous fd bacteriophages (rfd) expressing antigenic peptides were shown to induce cell-mediated immune responses in the absence of added adjuvant, being a promising delivery system for vaccination. Here, we tested the capacity of rfd phages to protect against infection with the human protozoan Trypanosoma cruzi, the etiologic agent of Chagas Disease. For this, C57BL/6 (B6) and Tlr9-/- mice were vaccinated with rfd phages expressing the OVA257-264 peptide or the T. cruzi-immunodominant peptides PA8 and TSKB20 and challenged with either the T. cruzi Y-OVA or Y-strain, respectively. We found that vaccination with rfd phages induces anti-PA8 and anti-TSKB20 IgG production, expansion of Ag-specific IFN-γ, TNF-α, and Granzyme B-producing CD8+ T cells, as well as in vivo Ag-specific cytotoxic responses. Moreover, the fd-TSKB20 vaccine was able to protect against mortality induced by a high-dose inoculum of the parasite. Although vaccination with rfd phages successfully reduced both parasitemia and parasite load in the myocardium of WT B6 mice, Tlr9-/- animals were not protected against infection. Thus, our data extend previous studies, demonstrating that rfd phages induce Ag-specific IgG and CD8+ T cell-mediated responses and confer protection against an important human parasite infection, through a TLR9-dependent mechanism.


Assuntos
Bacteriófago M13 , Doença de Chagas , Regulação da Expressão Gênica , Vacinas Protozoárias , Receptor Toll-Like 9 , Trypanosoma cruzi , Vacinação , Animais , Bacteriófago M13/genética , Bacteriófago M13/imunologia , Doença de Chagas/genética , Doença de Chagas/imunologia , Doença de Chagas/prevenção & controle , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Camundongos , Camundongos Knockout , Vacinas Protozoárias/genética , Vacinas Protozoárias/imunologia , Vacinas Protozoárias/farmacologia , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/imunologia , Trypanosoma cruzi/genética , Trypanosoma cruzi/imunologia
2.
PLoS One ; 8(12): e82988, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24376622

RESUMO

In a previous study we had shown that membrane cholesterol removal induced unregulated lysosomal exocytosis events leading to the depletion of lysosomes located at cell periphery. However, the mechanism by which cholesterol triggered these exocytic events had not been uncovered. In this study we investigated the importance of cholesterol in controlling mechanical properties of cells and its connection with lysosomal exocytosis. Tether extraction with optical tweezers and defocusing microscopy were used to assess cell dynamics in mouse fibroblasts. These assays showed that bending modulus and surface tension increased when cholesterol was extracted from fibroblasts plasma membrane upon incubation with MßCD, and that the membrane-cytoskeleton relaxation time increased at the beginning of MßCD treatment and decreased at the end. We also showed for the first time that the amplitude of membrane-cytoskeleton fluctuation decreased during cholesterol sequestration, showing that these cells become stiffer. These changes in membrane dynamics involved not only rearrangement of the actin cytoskeleton, but also de novo actin polymerization and stress fiber formation through Rho activation. We found that these mechanical changes observed after cholesterol sequestration were involved in triggering lysosomal exocytosis. Exocytosis occurred even in the absence of the lysosomal calcium sensor synaptotagmin VII, and was associated with actin polymerization induced by MßCD. Notably, exocytosis triggered by cholesterol removal led to the secretion of a unique population of lysosomes, different from the pool mobilized by actin depolymerizing drugs such as Latrunculin-A. These data support the existence of at least two different pools of lysosomes with different exocytosis dynamics, one of which is directly mobilized for plasma membrane fusion after cholesterol removal.


Assuntos
Membrana Celular/efeitos dos fármacos , Colesterol/química , Fibroblastos/efeitos dos fármacos , Lisossomos/metabolismo , beta-Ciclodextrinas/farmacologia , Actinas/genética , Actinas/metabolismo , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular , Membrana Celular/ultraestrutura , Colesterol/deficiência , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/ultraestrutura , Exocitose/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/metabolismo , Expressão Gênica , Lisossomos/classificação , Fluidez de Membrana/efeitos dos fármacos , Camundongos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Sinaptotagminas/antagonistas & inibidores , Sinaptotagminas/genética , Sinaptotagminas/metabolismo , Tiazolidinas/farmacologia , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...