Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nutr ; 148(12): 1886-1894, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30517726

RESUMO

Background: Humans and mice absorb bovine milk exosomes and their RNA cargos. Objectives: The objectives of this study were to determine whether milk exosome- and RNA-depleted (ERD) and exosome- and RNA-sufficient (ERS) diets alter the concentrations of purine metabolites in mouse livers, and to determine whether diets depleted of bovine milk alter the plasma concentration and urine excretion of purine metabolites in adults and infants, respectively. Methods: C57BL/6 mice were fed ERD (providing 2% of the microRNA cargos compared with ERS) and ERS diets starting at age 3 wk; livers were collected at age 7 wk. Plasma and 24-h urine samples were collected from healthy adults who consumed (DCs) or avoided (DAs) dairy products. Spot urine samples were collected from healthy infants fed human milk (HM), milk formula (MF), or soy formula (SF) at age 3 mo. Purine metabolites were analyzed in liver, plasma, and urine; mRNAs and microRNAs were analyzed in the livers of female mice. Results: We found that 9 hepatic purine metabolites in ERD-fed mice were 1.76 ± 0.43 times the concentrations in ERS-fed mice (P < 0.05). Plasma concentrations and urine excretion of purine metabolites in DAs was ≤1.62 ± 0.45 times the concentrations in DCs (P < 0.05). The excretion of 13 purine metabolites in urine from SF infants was ≤175 ± 39 times the excretion in HM and MF infants (P < 0.05). mRNA expression of 5'-nucleotidase, cytosolic IIIB, and adenosine deaminase in mice fed ERD was 0.64 ± 0.52 and 0.60 ± 0.28 times the expression in mice fed ERS, respectively. Conclusion: Diets depleted of bovine-milk exosomes and RNA cargos caused increases in hepatic purine metabolites in mice, and in plasma and urine from human adults and infants, compared with exosome-sufficient controls. These findings are important, because purines play a role in intermediary metabolism and cell signaling.


Assuntos
Exossomos/fisiologia , Fígado/metabolismo , MicroRNAs/fisiologia , Leite/química , Purinas/metabolismo , Animais , Bovinos , Dieta , Humanos , Camundongos , Camundongos Endogâmicos C57BL , RNA , Transcriptoma
2.
J Nutr ; 147(1): 3-10, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27852870

RESUMO

Extracellular vesicles (EVs) in milk harbor a variety of compounds, including lipids, proteins, noncoding RNAs, and mRNAs. Among the various classes of EVs, exosomes are of particular interest, because cargo sorting in exosomes is a regulated, nonrandom process and exosomes play essential roles in cell-to-cell communication. Encapsulation in exosomes confers protection against enzymatic and nonenzymatic degradation of cargos and provides a pathway for cellular uptake of cargos by endocytosis of exosomes. Compelling evidence suggests that exosomes in bovine milk are transported by intestinal cells, vascular endothelial cells, and macrophages in human and rodent cell cultures, and bovine-milk exosomes are delivered to peripheral tissues in mice. Evidence also suggests that cargos in bovine-milk exosomes, in particular RNAs, are delivered to circulating immune cells in humans. Some microRNAs and mRNAs in bovine-milk exosomes may regulate the expression of human genes and be translated into protein, respectively. Some exosome cargos are quantitatively minor in the diet compared with endogenous synthesis. However, noncanonical pathways have been identified through which low concentrations of dietary microRNAs may alter gene expression, such as the accumulation of exosomes in the immune cell microenvironment and the binding of microRNAs to Toll-like receptors. Phenotypes observed in infant-feeding studies include higher Mental Developmental Index, Psychomotor Development Index, and Preschool Language Scale-3 scores in breastfed infants than in those fed various formulas. In mice, supplementation with plant-derived MIR-2911 improved the antiviral response compared with controls. Porcine-milk exosomes promote the proliferation of intestinal cells in mice. This article discusses the above-mentioned advances in research concerning milk exosomes and their cargos in human nutrition. Implications for infant nutrition are emphasized, where permitted, but data in infants are limited.


Assuntos
Vesículas Extracelulares/química , Leite Humano/química , Leite/química , Animais , Bovinos , Humanos , Lactente , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...