Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33888580

RESUMO

The North American tiger salamander species complex, including its best-known species, the Mexican axolotl, has long been a source of biological fascination. The complex exhibits a wide range of variation in developmental life history strategies, including populations and individuals that undergo metamorphosis; those able to forego metamorphosis and retain a larval, aquatic lifestyle (i.e., paedomorphosis); and those that do both. The evolution of a paedomorphic life history state is thought to lead to increased population genetic differentiation and ultimately reproductive isolation and speciation, but the degree to which it has shaped population- and species-level divergence is poorly understood. Using a large multilocus dataset from hundreds of samples across North America, we identified genetic clusters across the geographic range of the tiger salamander complex. These clusters often contain a mixture of paedomorphic and metamorphic taxa, indicating that geographic isolation has played a larger role in lineage divergence than paedomorphosis in this system. This conclusion is bolstered by geography-informed analyses indicating no effect of life history strategy on population genetic differentiation and by model-based population genetic analyses demonstrating gene flow between adjacent metamorphic and paedomorphic populations. This fine-scale genetic perspective on life history variation establishes a framework for understanding how plasticity, local adaptation, and gene flow contribute to lineage divergence. Many members of the tiger salamander complex are endangered, and the Mexican axolotl is an important model system in regenerative and biomedical research. Our results chart a course for more informed use of these taxa in experimental, ecological, and conservation research.


Assuntos
Ambystoma/genética , Ambystoma/metabolismo , Ambystoma mexicanum/genética , Animais , Bases de Dados Genéticas , Fluxo Gênico , Genética Populacional/métodos , Geografia , Larva/genética , Metamorfose Biológica/genética , América do Norte , Filogenia
2.
Mol Ecol ; 22(1): 111-29, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23062080

RESUMO

Modern analytical methods for population genetics and phylogenetics are expected to provide more accurate results when data from multiple genome-wide loci are analysed. We present the results of an initial application of parallel tagged sequencing (PTS) on a next-generation platform to sequence thousands of barcoded PCR amplicons generated from 95 nuclear loci and 93 individuals sampled across the range of the tiger salamander (Ambystoma tigrinum) species complex. To manage the bioinformatic processing of this large data set (344 330 reads), we developed a pipeline that sorts PTS data by barcode and locus, identifies high-quality variable nucleotides and yields phased haplotype sequences for each individual at each locus. Our sequencing and bioinformatic strategy resulted in a genome-wide data set with relatively low levels of missing data and a wide range of nucleotide variation. structure analyses of these data in a genotypic format resulted in strongly supported assignments for the majority of individuals into nine geographically defined genetic clusters. Species tree analyses of the most variable loci using a multi-species coalescent model resulted in strong support for most branches in the species tree; however, analyses including more than 50 loci produced parameter sampling trends that indicated a lack of convergence on the posterior distribution. Overall, these results demonstrate the potential for amplicon-based PTS to rapidly generate large-scale data for population genetic and phylogenetic-based research.


Assuntos
Ambystoma/genética , Genética Populacional , Filogenia , Análise de Sequência de DNA/métodos , Animais , Biologia Computacional , Código de Barras de DNA Taxonômico , Loci Gênicos , Haplótipos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...