Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
EFSA J ; 22(5): e8780, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38751507

RESUMO

The food enzyme α-amylase (4-α-d-glucan glucanohydrolase; EC 3.2.1.1) is produced with the non-genetically modified microorganism Bacillus licheniformis strain AE-TA by Amano Enzyme Inc. The food enzyme is intended to be used in eight food manufacturing processes. Since residual amounts of food enzyme-total organic solids (TOS) are removed in two food manufacturing processes, dietary exposure was calculated only for the remaining six processes. It was estimated to be up to 0.056 mg TOS/kg body weight per day in European populations. The production strain of the food enzyme fulfils the requirements for the qualified presumption of safety approach to safety assessment. Consequently, in the absence of other concerns, the Panel considered that toxicological studies were not needed for the safety assessment of this food enzyme. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and two matches with respiratory allergens were found. The Panel considered that the risk of allergic reactions upon dietary exposure to this food enzyme cannot be excluded (except for the production of distilled alcohol), but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

2.
EFSA J ; 22(5): e8770, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38756348

RESUMO

Bacillus paralicheniformis, a species known to produce the antimicrobial bacitracin, could be misidentified as Bacillus licheniformis, depending on the identification method used. For this reason, the European Commission requested EFSA to review the taxonomic identification of formerly assessed B. licheniformis production strains. Following this request, EFSA retrieved the raw data from 27 technical dossiers submitted and found that the taxonomic identification was established by 16S rRNA gene analyses for 15 strains and by whole genome sequence analysis for 12 strains. As a conclusion, only these 12 strains could be unambiguously identified as B. licheniformis.

3.
EFSA J ; 22(4): e8723, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38585217

RESUMO

The food enzyme subtilisin (EC 3.4.21.62) is produced with the genetically modified Bacillus licheniformis strain NZYM-CB by Novozymes A/S. The genetic modifications do not give rise to safety concerns. The food enzyme is considered free from viable cells of the production organism and its DNA. It is intended to be used in six food manufacturing processes. The dietary exposure to the food enzyme-TOS was estimated to be up to 0.722 mg TOS/kg body weight (bw) per day in European populations. The production strain of the food enzyme fulfils the requirements for the qualified presumption of safety approach to safety assessment. As no other concerns arising from the manufacturing process were identified, the Panel considered that toxicological tests were not required for the assessment of this food enzyme. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and 20 matches were found, including two food allergens (melon and pomegranate). The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, particularly in individuals sensitised to melon and pomegranate, but would not exceed the risk from consumption of melon or pomegranate. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

4.
EFSA J ; 22(3): e8606, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38440253

RESUMO

The food enzyme α-galactosidase (α-d-galactoside galactohydrolase; EC 3.2.1.22) is produced with the genetically modified Saccharomyces cerevisiae strain CBS 615.94 by Kerry Ingredients & Flavours Ltd. The production strain of the food enzyme contains multiple copies of a known antimicrobial resistance gene. However, based on the absence of viable cells and DNA from the production organism in the food enzyme, this is not considered to be a risk. As no other concerns arising from the genetically modified microbial source or from the manufacturing process have been identified, the Panel considered that toxicological tests were not needed for the assessment of this food enzyme. The food enzyme is intended to be used in guar gum processing. The dietary exposure was estimated to be up to 0.828 mg TOS/kg body weight per day in European populations. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that a risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

5.
EFSA J ; 22(3): e8631, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38450083

RESUMO

The food enzyme mucorpepsin (EC 3.4.23.23) is produced with the non-genetically modified Rhizomucor miehei strain LP-N836 by Meito Sangyo Co., Ltd. The native enzyme can be chemically modified to produce a more thermolabile form. The food enzyme is free from viable cells of the production organism. It is intended to be used in the processing of dairy products for the production of cheese and fermented dairy products. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.108 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 95 mg TOS/kg bw per day, the mid-dose tested, which when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 880. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and four matches with respiratory allergens and one with a food allergen (mustard) were found. The Panel considered that the risk of allergic reactions upon dietary exposure to this food enzyme, particularly in individuals sensitised to mustard proteins, cannot be excluded. Based on the data provided, the Panel concluded that both the native and thermolabile forms of this food enzyme do not give rise to safety concerns under the intended conditions of use.

6.
EFSA J ; 22(2): e8617, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38379730

RESUMO

The food enzyme asparaginase (l-asparagine amidohydrolase; EC 3.5.1.1) is produced with the genetically modified Aspergillus niger strain AGN by DSM Food Specialties B.V. The genetic modifications do not give rise to safety concerns. The food enzyme is free from viable cells of the production organism and its DNA. It is intended to be used to prevent acrylamide formation in food processing. The dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 1.434 mg TOS/kg body weight (bw) per day in European populations. The toxicity studies were carried out with an asparaginase from A. niger (strain ASP). The Panel considered this food enzyme as a suitable substitute for the asparaginase to be used in the toxicological studies, because the genetic differences between the production strains are not expected to result in a different toxigenic potential, and the raw materials and manufacturing processes of both food enzymes are comparable. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 1038 mg TOS/kg bw per day, which, when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 724. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

7.
EFSA J ; 22(2): e8624, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38405112

RESUMO

The food enzyme microbial collagenase (EC 3.4.24.3) is produced with the genetically modified Streptomyces violaceoruber strain pCol by Nagase (Europa) GmbH. The genetic modifications do not give rise to safety concerns. The food enzyme is free from viable cells of the production organism and its DNA. It is intended to be used in two food manufacturing processes: the production of modified meat and fish products and the production of protein hydrolysates from meat and fish proteins. The dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 1.098 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 940 mg TOS/kg bw per day, the highest dose tested, which, when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 856. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns, under the intended conditions of use.

8.
EFSA J ; 22(2): e8616, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38415018

RESUMO

The food enzyme ß-fructofuranosidase (ß-d-fructofuranoside fructohydrolase; EC 3.2.1.26) is produced with the non-genetically modified Saccharomyces cerevisiae strain NCYC R693 by Kerry Ingredients & Flavours Ltd. The production strain meets the requirements for the qualified presumption of safety (QPS) approach. The food enzyme is intended to be used in four food manufacturing processes. The dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 2.485 mg TOS/kg body weight per day in European populations. As the production strain qualifies for the QPS approach of safety assessment and no issue of concern arising from the production process of the food enzyme were identified, the Panel considered that no toxicological studies other than the assessment of allergenicity were necessary. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and one match with a tomato allergen was found. The Panel considered that the risk of allergic reactions upon dietary exposure to this food enzyme, particularly in individuals sensitised to tomato, cannot be excluded. However, the likelihood of allergic reactions is expected not to exceed the likelihood of allergic reactions to tomato. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

9.
EFSA J ; 22(1): e8506, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38213414

RESUMO

The food enzyme leucyl aminopeptidase (EC 3.4.11.1) is produced with the non-genetically modified Aspergillus sp. strain AE-MB by Amano Enzyme Inc. The food enzyme is considered free from viable cells of the production organism. It is intended to be used in five food manufacturing processes: processing of dairy products for the production of (1) flavouring preparations; processing of plant- and fungal-derived products for the production of (2) protein hydrolysates; processing of meat and fish products for the production of (3) protein hydrolysates, (4) modified meat and fish products and processing of (5) yeast and yeast products. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 2.273 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 183 mg TOS/kg bw per day. The calculated margin of exposure for each age group was 135 (infants), 81 (toddlers), 83 (children), 109 (adolescents), 160 (adults) and 184 (the elderly). A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no matches were found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. The safety of the food enzyme could not be established given the derived margins of exposure. Therefore, the Panel concluded that this food enzyme could not be considered safe under the intended conditions of use.

10.
EFSA J ; 22(1): e8509, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38288396

RESUMO

The food enzyme protein-glutamine γ-glutamyltransferase (protein-glutamine: amine γ-glutamyltransferase; EC 2.3.2.13) is produced with the non-genetically modified Streptomyces mobaraensis strain M2020197 by Taixing Dongsheng Bio-Tech Co. Ltd. The identity of the production strain and the absence of viable cells could not be established. The food enzyme is intended to be used in eight food manufacturing processes: processing of cereals and other grains for the production of (1) baked products, (2) cereal-based products other than baked; processing of dairy products for the production of (3) fermented dairy products, (4) cheese, (5) dairy desserts; processing of plant- and fungal-derived products for the production of (6) meat analogues, (7) plant-based analogues of milk and milk products; processing of meat and fish products for the production of (8) modified meat and fish products. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 3.498 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 91 mg TOS/kg bw per day. The calculated margin of exposure for each age group was 36 (infants), 26 (toddlers), 50 (children), 99 (adolescents), 115 (adults) and 133 (the elderly). A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that a risk of allergic reactions upon dietary exposure to this food enzyme cannot be excluded, but the likelihood is low. The safety of the food enzyme could not be established given the derived margins of exposure. Therefore, the Panel concluded that the food enzyme could not be considered safe under the intended conditions of use.

11.
EFSA J ; 21(11): e08390, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027440

RESUMO

The food enzyme bacillolysin (EC 3.4.24.28) is produced with the non-genetically modified Bacillus amyloliquefaciens strain HPN 131 by ENMEX SA de CV. The production strain qualifies for the qualified presumption of safety (QPS) approach to safety assessment. The food enzyme under assessment is intended to be used in seven food manufacturing processes: processing of cereals and other grains for the production of baked products, brewed products and distilled alcohol; processing of dairy products for the production of modified milk proteins; processing of meat and fish products for the production of protein hydrolysates; processing of plant- and fungal-derived products for the production of protein hydrolysates; processing of yeasts and yeast products. Since residual amounts of total organic solids (TOS) are not carried over to distilled alcohol, a dietary exposure was estimated only for the remaining six food manufacturing processes. Exposure was estimated to be up to 8.302 mg TOS/kg body weight (bw) per day in European populations. As the production strain qualifies for the QPS status and no issue of concern arose from the production process of the food enzyme, the Panel considered that no toxicological studies other than the assessment of allergenicity were necessary. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no matches were found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded (except for distilled alcohol production), but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

12.
EFSA J ; 21(11): e08406, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027443

RESUMO

The food enzyme subtilisin (EC 3.4.21.62) is produced with the non-genetically modified Bacillus licheniformis strain NZYM-CX by Novozymes A/S. The production strain met the requirements for the qualified presumption of safety (QPS) approach. The food enzyme is intended to be used in eight food manufacturing processes: processing of cereals and other grains for the production of brewed products; processing of dairy products for the production of modified milk proteins and flavouring preparations; processing of plant- and fungal-derived products for the production of plant-based analogues of milk and milk products, protein hydrolysates and edible oils from algae; processing of meat and fish products for the production of protein hydrolysates; processing of yeast and yeast products. Since residual amounts of total organic solids (TOS) are removed in the production of edible oils from algae, dietary exposure was calculated only for the remaining seven food manufacturing processes. Exposure was estimated to be up to 2.393 mg TOS/kg body weight (bw) per day in European populations. As the production strain qualified for the QPS approach and no issues of concern arose from the production process of the food enzyme, the Panel considered that toxicological studies were unnecessary. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was performed, and a total of 20 matches were found, 17 to respiratory allergens, two to food allergens (found in muskmelon and pomegranate) and one to a contact allergen. The Panel considered that the risk of allergic reactions upon dietary exposure to this food enzyme cannot be excluded, especially in individuals sensitised to muskmelon or pomegranate, but would not exceed the risk of consuming these foods. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

13.
EFSA J ; 21(11): e08400, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027447

RESUMO

The food enzyme phospholipase A2 (phosphatidylcholine 2-acylhydrolase, EC 3.1.1.4) is produced with the genetically modified Aspergillus niger strain PLA by DSM Food Specialties B.V. The genetic modifications do not give rise to safety concerns. The food enzyme is free from viable cells of the production organism and its DNA. It is intended to be used in the processing of egg and egg products, in the processing of fats and oils by degumming and for the production of modified lecithins (lysolecithin). As residual total organic solids (TOS) are removed in the refined fats and oils during degumming, dietary exposure was calculated only for the remaining two food manufacturing processes. For egg processing, the dietary exposure was estimated to be up to 1.712 mg TOS/kg body weight (bw) per day in European populations. Wet gum can be used to produce lysolecithin with the highest dietary exposure of 1.61 mg TOS/kg bw per day in children at the 95th percentile when used as a food additive. Genotoxicity tests did not raise a safety concern. The systemic toxicity was assessed by a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 1350 mg TOS/kg bw per day, the highest dose tested, which, when compared with the estimated overall dietary exposure, resulted in a margin of exposure of at least 851. A search for the similarity of the amino acid sequence of the food enzyme to those of known allergens was made and no match was found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

14.
EFSA J ; 21(11): e8392, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38035137

RESUMO

The food enzyme bacillolysin (EC 3.4.24.28) is produced with the non-genetically modified Bacillus amyloliquefaciens strain AGS 430 by Kerry Ingredients & Flavours Ltd. The production strain qualifies for the qualified presumption of safety (QPS) approach to safety assessment. The food enzyme is intended to be used in 11 food manufacturing processes: processing of cereals and other grains for the production of baked products; cereal-based products other than baked; brewed products; starch and gluten fractions; distilled alcohol; processing of dairy products for the production of flavouring preparations and modified milk proteins; processing of meat and fish products for the production of protein hydrolysates; processing of plant- and fungal-derived products for the production of protein hydrolysates and plant-based analogues of milk and milk products; processing of yeast and yeast products. Since residual amounts of the total organic solids (TOS) are removed during two processes, dietary exposure was estimated only for the remaining nine food manufacturing processes. Exposure was estimated up to 3.482 mg TOS/kg body weight (bw) per day in European populations. As the production strain qualifies for the QPS approach and no issue of concern arose from the production process of the food enzyme, the Panel considered that no toxicological studies other than the assessment of allergenicity were necessary. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions upon dietary exposure cannot be excluded (except for distilled alcohol production), but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

15.
EFSA J ; 21(11): e8391, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38035141

RESUMO

The food enzyme bacillolysin (EC 3.4.24.28) is produced with the non-genetically modified Bacillus amyloliquefaciens strain GNP by DSM Food Specialties B.V. The production strain qualifies for the qualified presumption of safety (QPS) approach to safety assessment. The food enzyme is intended to be used in nine food manufacturing processes: processing of cereals and other grains for the production of baked products, cereal-based products other than baked, brewed products and distilled alcohol; processing of dairy products for the production of flavouring preparation and modified milk proteins; processing of meat and fish products for the production of protein hydrolysates; processing of plant- and fungal-derived products for the production of protein hydrolysates and plant-based analogues of milk and milk products. Since the food enzyme-total organic solids (TOS) is not carried into distilled alcohols, dietary exposure was estimated only to the remaining eight food processes. Exposure was estimated to be up to 17.934 mg TOS/kg body weight per day in European populations. As the production strain qualifies for the QPS approach to safety assessment and no issue of concern arose from the production process, no toxicological studies other than the assessment of allergenicity were required. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions upon dietary exposure cannot be excluded (except for distilled alcohol production), but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns, under the intended conditions of use.

16.
EFSA J ; 21(11): e8399, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38035144

RESUMO

The food enzyme endo-1,4-ß-xylanase (4-ß-d-xylan xylanohydrolase; EC 3.2.1.8) is produced with the non-genetically modified Trichoderma citrinoviride strain 278 by Kerry Ingredients & Flavours Ltd. The food enzyme was considered free from viable cells of the production organism. It is intended to be used in eight food manufacturing processes: processing of cereals and other grains for the production of baked products; production of cereal-based products other than baked, brewed products, starch and gluten fractions, distilled alcohol; processing of fruits and vegetables for the production of juices, wine and wine vinegar and processing of yeast and yeast products. Since residual amounts of total organic solids (TOS) are removed during two processes, dietary exposure was only calculated for the remaining six food manufacturing processes. Exposure was estimated to be up to 4.808 mg TOS/kg body weight (bw) per day in European populations. The Panel was unable to reach a conclusion on genotoxicity and systemic toxicity. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that a risk of allergic reactions upon dietary exposure cannot be excluded (except for distilled alcohol production), but the likelihood is low. In the absence of an acceptable full set of toxicological data, the Panel was unable to complete the safety assessment of the food enzyme.

17.
EFSA J ; 21(9): e08253, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37781414

RESUMO

The food enzyme containing triacylglycerol lipase (triacylglycerol acylhydrolase; EC 3.1.1.3) is prepared from the pregastric tissues of calves, young goats and lambs by Caglificio Clerici SpA. The food enzyme is intended to be used in the production of cheese. As no concerns arose from the animal source of the food enzyme, from its manufacture and based on the history of safe use and consumption, the Panel considered that toxicological data were not required and no exposure assessment was necessary. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that a risk of allergic reactions upon dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

18.
EFSA J ; 21(10): e08254, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37809355

RESUMO

The food enzyme asparaginase (l-asparagine amidohydrolase, EC 3.5.1.1) is produced with the genetically modified Aspergillus oryzae strain NZYM-SP by Novozymes A/S. The genetic modifications do not give rise to safety concerns. The food enzyme is considered free from viable cells of the production organism and its DNA. It is intended to be used to prevent acrylamide formation in food processing. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.101 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 880 mg TOS/kg bw per day, the highest dose tested, which, when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 8,713. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that a risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

19.
EFSA J ; 21(8): e08160, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37539079

RESUMO

The food enzyme α-amylase (4-α-D-glucan glucanohydrolase; EC 3.2.1.1) is produced with the non-genetically modified microorganism Bacillus licheniformis strain T74 by Novozymes A/S. The production strain met the qualifications of the qualified presumption of safety (QPS) approach. The food enzyme is intended to be used in eight food manufacturing processes: starch processing for the production of glucose syrups and other starch hydrolysates, distilled alcohol production, refined and unrefined sugar production, brewing processes, cereal-based processes, fruit and vegetable processing for juice production, fruit and vegetable processing for products other than juices and the production of dairy analogues. Since residual amounts of total organic solids (TOS) are removed during two food processes (starch processing for the production of glucose syrups and other starch hydrolysates, distilled alcohol production), dietary exposure was calculated only for the remaining six food manufacturing processes. It was estimated to be up to 0.291 mg TOS/kg body weight per day in European populations. Since the production strain meets the requirements for the QPS approach and no issues of concern arose from the production process of the food enzyme, the Panel considered that toxicological studies were unnecessary. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that, under the intended conditions of use, the risk of allergic reactions upon dietary exposure to this food enzyme cannot be excluded (except for distilled alcohol production), but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

20.
EFSA J ; 21(8): e08099, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37575621

RESUMO

The food enzyme triacylglycerol lipase (triacylglycerol acylhydrolase; EC 3.1.1.3) is produced with the non-genetically modified Rhizopus arrhizus strain AE-TL(B) by Amano Enzyme Inc. The food enzyme was considered free from viable cells of the production organism. It is intended to be used in the modification of fats and oils by interesterification and in the manufacture of enzyme-modified dairy ingredients. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.057 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 1,960 mg TOS/kg bw per day, the highest dose tested, which, when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 34,386. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match found. The Panel considered that, under the intended conditions of use, the risk of allergic reactions upon dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns, under the intended conditions of use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...