Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Cell Rep ; 42(10): 113136, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37756159

RESUMO

Polycomb repressive complex 1 (PRC1) undergoes phase separation to form Polycomb condensates that are multi-component hubs for silencing Polycomb target genes. In this study, we demonstrate that formation and regulation of PRC1 condensates are consistent with the scaffold-client model, where the Chromobox 2 (CBX2) protein behaves as the scaffold while the other PRC1 proteins are clients. Such clients induce a re-entrant phase transition of CBX2 condensates. The composition of the multi-component PRC1 condensates (1) determines the dynamic properties of the scaffold protein; (2) selectively promotes the formation of CBX4-PRC1 condensates while dissolving condensates of CBX6-, CBX7-, and CBX8-PRC1; and (3) controls the enrichment of CBX4-, CBX7-, and CBX8-PRC1 in CBX2-PRC1 condensates and the exclusion of CBX6-PRC1 from CBX2-PRC1 condensates. Our findings uncover how multi-component PRC1 condensates are assembled via an intricate scaffold-client mechanism whereby the properties of the PRC1 condensates are sensitively regulated by its composition and stoichiometry.


Assuntos
Núcleo Celular , Complexo Repressor Polycomb 1 , Humanos , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Núcleo Celular/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Cromatina/metabolismo , Ligases/genética
3.
Nat Comput Sci ; 1(11): 732-743, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35795820

RESUMO

Various physics- and data-driven sequence-dependent protein coarse-grained models have been developed to study biomolecular phase separation and elucidate the dominant physicochemical driving forces. Here, we present Mpipi, a multiscale coarse-grained model that describes almost quantitatively the change in protein critical temperatures as a function of amino-acid sequence. The model is parameterised from both atomistic simulations and bioinformatics data and accounts for the dominant role of π-π and hybrid cation-π/π-π interactions and the much stronger attractive contacts established by arginines than lysines. We provide a comprehensive set of benchmarks for Mpipi and seven other residue-level coarse-grained models against experimental radii of gyration and quantitative in-vitro phase diagrams; Mpipi predictions agree well with experiment on both fronts. Moreover, it can account for protein-RNA interactions, correctly predicts the multiphase behaviour of a charge-matched poly-arginine/poly-lysine/RNA system, and recapitulates experimental LLPS trends for sequence mutations on FUS, DDX4 and LAF-1 proteins.

4.
J Chem Inf Model ; 59(9): 3625-3629, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31423789

RESUMO

Markov state models (MSMs) have become one of the most important techniques for understanding biomolecular transitions from classical molecular dynamics (MD) simulations. MSMs provide a systematized way of accessing the long time kinetics of the system of interest from the short-time scale microscopic transitions observed in simulation trajectories. At the same time, they provide a consistent description of the equilibrium and dynamical properties of the system of interest, and they are ideally suited for comparisons against experiment. A few software packages exist for building MSMs, which have been widely adopted. Here we introduce MasterMSM, a new Python package that uses the master equation formulation of MSMs and provides a number of new algorithms for building and analyzing these models. We demonstrate some of the most distinctive features of the package, including the estimation of rates, definition of core-sets for transition based assignment of states, the estimation of committors and fluxes, and the sensitivity analysis of the emerging networks. The package is available at https://github.com/daviddesancho/MasterMSM .


Assuntos
Cadeias de Markov , Simulação de Dinâmica Molecular , Software , Algoritmos , Cinética
5.
Proc Natl Acad Sci U S A ; 113(44): E6749-E6756, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27729524

RESUMO

Scalable, high-throughput DNA sequencing is a prerequisite for precision medicine and biomedical research. Recently, we presented a nanopore-based sequencing-by-synthesis (Nanopore-SBS) approach, which used a set of nucleotides with polymer tags that allow discrimination of the nucleotides in a biological nanopore. Here, we designed and covalently coupled a DNA polymerase to an α-hemolysin (αHL) heptamer using the SpyCatcher/SpyTag conjugation approach. These porin-polymerase conjugates were inserted into lipid bilayers on a complementary metal oxide semiconductor (CMOS)-based electrode array for high-throughput electrical recording of DNA synthesis. The designed nanopore construct successfully detected the capture of tagged nucleotides complementary to a DNA base on a provided template. We measured over 200 tagged-nucleotide signals for each of the four bases and developed a classification method to uniquely distinguish them from each other and background signals. The probability of falsely identifying a background event as a true capture event was less than 1.2%. In the presence of all four tagged nucleotides, we observed sequential additions in real time during polymerase-catalyzed DNA synthesis. Single-polymerase coupling to a nanopore, in combination with the Nanopore-SBS approach, can provide the foundation for a low-cost, single-molecule, electronic DNA-sequencing platform.


Assuntos
Eletrodos , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Nanoporos , Replicação do DNA , DNA Polimerase Dirigida por DNA , Desenho de Equipamento , Modelos Moleculares , Nucleotídeos/análise , Nucleotídeos/química , Polímeros/química , Porinas/metabolismo
6.
Proc Natl Acad Sci U S A ; 113(19): 5233-8, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27091962

RESUMO

DNA sequencing by synthesis (SBS) offers a robust platform to decipher nucleic acid sequences. Recently, we reported a single-molecule nanopore-based SBS strategy that accurately distinguishes four bases by electronically detecting and differentiating four different polymer tags attached to the 5'-phosphate of the nucleotides during their incorporation into a growing DNA strand catalyzed by DNA polymerase. Further developing this approach, we report here the use of nucleotides tagged at the terminal phosphate with oligonucleotide-based polymers to perform nanopore SBS on an α-hemolysin nanopore array platform. We designed and synthesized several polymer-tagged nucleotides using tags that produce different electrical current blockade levels and verified they are active substrates for DNA polymerase. A highly processive DNA polymerase was conjugated to the nanopore, and the conjugates were complexed with primer/template DNA and inserted into lipid bilayers over individually addressable electrodes of the nanopore chip. When an incoming complementary-tagged nucleotide forms a tight ternary complex with the primer/template and polymerase, the tag enters the pore, and the current blockade level is measured. The levels displayed by the four nucleotides tagged with four different polymers captured in the nanopore in such ternary complexes were clearly distinguishable and sequence-specific, enabling continuous sequence determination during the polymerase reaction. Thus, real-time single-molecule electronic DNA sequencing data with single-base resolution were obtained. The use of these polymer-tagged nucleotides, combined with polymerase tethering to nanopores and multiplexed nanopore sensors, should lead to new high-throughput sequencing methods.


Assuntos
Condutometria/instrumentação , DNA/genética , Nanoporos/ultraestrutura , Nucleotídeos/genética , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , Análise de Sequência de DNA/instrumentação , Sequência de Bases , Sistemas Computacionais , DNA/química , Desenho de Equipamento , Análise de Falha de Equipamento , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Polímeros/química , Análise de Sequência de DNA/métodos , Coloração e Rotulagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...