Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
iScience ; 26(12): 108475, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38077135

RESUMO

Viral replication is a complex dynamical process involving the global remodeling of the host cellular machinery across several stages. In this study, we provide a unified view of the virus-host interaction at the proteome level reconstructing protein co-expression networks from quantitative temporal data of four large DNA viruses. We take advantage of a formal framework, the theory of competing networks, to describe the viral infection as a dynamical system taking place on a network of networks where perturbations induced by viral proteins spread to hijack the host proteome for the virus benefit. Our methodology demonstrates how the viral replication cycle can be effectively examined as a complex interaction between protein networks, providing useful insights into the viral and host's temporal organization and strategies, key protein nodes targeted by the virus and dynamical bottlenecks during the course of the infection.

2.
Astrobiology ; 23(12): 1259-1283, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37930382

RESUMO

The low organic matter content in the hyperarid core of the Atacama Desert, together with abrupt temperature shifts and high ultraviolet radiation at its surface, makes this region one of the best terrestrial analogs of Mars and one of the best scenarios for testing instrumentation devoted to in situ planetary exploration. We have operated remotely and autonomously the SOLID-LDChip (Signs of Life Detector-Life Detector Chip), an antibody microarray-based sensor instrument, as part of a rover payload during the 2019 NASA Atacama Rover Astrobiology Drilling Studies (ARADS) Mars drilling simulation campaign. A robotic arm collected drilled cuttings down to 80 cm depth and loaded SOLID to process and assay them with LDChip for searching for molecular biomarkers. A remote science team received and analyzed telemetry data and LDChip results. The data revealed the presence of microbial markers from Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Firmicutes, and Cyanobacteria to be relatively more abundant in the middle layer (40-50 cm). In addition, the detection of several proteins from nitrogen metabolism indicates a pivotal role in the system. These findings were corroborated and complemented on "returned samples" to the lab by a comprehensive analysis that included DNA sequencing, metaproteomics, and a metabolic reconstruction of the sampled area. Altogether, the results describe a relatively complex microbial community with members capable of nitrogen fixation and denitrification, sulfur oxidation and reduction, or triggering oxidative stress responses, among other traits. This remote operation demonstrated the high maturity of SOLID-LDChip as a powerful tool for remote in situ life detection for future missions in the Solar System.


Assuntos
Cianobactérias , Marte , Raios Ultravioleta , Exobiologia/métodos , Anticorpos , Biomarcadores/análise , Clima Desértico
3.
Astrobiology ; 22(10): 1199-1209, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36194868

RESUMO

The effect of a Mars-like UV flux and γ-radiation on the detectability of biomarkers in dried cells of Chroococcidiopsis sp. CCMEE 029 was investigated using a fluorescence sandwich microarray immunoassay. The production of anti-Chroococcidiopsis antibodies allowed the immunoidentification of a reduced, though still detectable, signal in dried cells mixed with phyllosilicatic and sulfatic Mars regolith simulants after exposure to 6.8 × 105 kJ/m2 of a Mars-like UV flux. No signal was detected in dried cells that were not mixed with minerals after 1.4 × 105 kJ/m2. For γ-radiation (60Co), no detectable variations of the fluorescence signal occurred in dried cells exposed to 113 kGy compared to non-irradiated dried cells. Our results suggest that immunoassay-based techniques could be used to detect life tracers eventually present in the martian subsurface in freshly excavated materials only if shielded from solar UV. The high structural integrity of biomarkers irradiated with γ-radiation that mimics a dose accumulated in 13 Myr at 2 m depth from the martian surface has implications for the potential detectability of similar organic molecules/compounds by future life-detection missions such as the ExoMars Rosalind Franklin rover.


Assuntos
Cianobactérias , Marte , Biomarcadores , Cianobactérias/efeitos da radiação , Meio Ambiente Extraterreno , Minerais , Radiação Ionizante
4.
Nat Ecol Evol ; 6(11): 1599-1600, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36175542
5.
Proc Natl Acad Sci U S A ; 119(30): e2119734119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35867830

RESUMO

Recent years have witnessed the detection of an increasing number of complex organic molecules in interstellar space, some of them being of prebiotic interest. Disentangling the origin of interstellar prebiotic chemistry and its connection to biochemistry and ultimately, to biology is an enormously challenging scientific goal where the application of complexity theory and network science has not been fully exploited. Encouraged by this idea, we present a theoretical and computational framework to model the evolution of simple networked structures toward complexity. In our environment, complex networks represent simplified chemical compounds and interact optimizing the dynamical importance of their nodes. We describe the emergence of a transition from simple networks toward complexity when the parameter representing the environment reaches a critical value. Notably, although our system does not attempt to model the rules of real chemistry nor is dependent on external input data, the results describe the emergence of complexity in the evolution of chemical diversity in the interstellar medium. Furthermore, they reveal an as yet unknown relationship between the abundances of molecules in dark clouds and the potential number of chemical reactions that yield them as products, supporting the ability of the conceptual framework presented here to shed light on real scenarios. Our work reinforces the notion that some of the properties that condition the extremely complex journey from the chemistry in space to prebiotic chemistry and finally, to life could show relatively simple and universal patterns.


Assuntos
Meio Ambiente Extraterreno , Origem da Vida
7.
Phys Life Rev ; 38: 55-106, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34088608

RESUMO

Understanding how genotypes map onto phenotypes, fitness, and eventually organisms is arguably the next major missing piece in a fully predictive theory of evolution. We refer to this generally as the problem of the genotype-phenotype map. Though we are still far from achieving a complete picture of these relationships, our current understanding of simpler questions, such as the structure induced in the space of genotypes by sequences mapped to molecular structures, has revealed important facts that deeply affect the dynamical description of evolutionary processes. Empirical evidence supporting the fundamental relevance of features such as phenotypic bias is mounting as well, while the synthesis of conceptual and experimental progress leads to questioning current assumptions on the nature of evolutionary dynamics-cancer progression models or synthetic biology approaches being notable examples. This work delves with a critical and constructive attitude into our current knowledge of how genotypes map onto molecular phenotypes and organismal functions, and discusses theoretical and empirical avenues to broaden and improve this comprehension. As a final goal, this community should aim at deriving an updated picture of evolutionary processes soundly relying on the structural properties of genotype spaces, as revealed by modern techniques of molecular and functional analysis.


Assuntos
Genótipo , Fenótipo
8.
Chaos Solitons Fractals ; 138: 109964, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32518475

RESUMO

In this work, we present a stochastic discrete-time SEIR Susceptible-Exposed-Infectious-Recoveredmodel adapted to describe the propagation of COVID-19 during a football tournament. Specifically, we are concerned about the re-start of the Spanish national football league, La Liga, which is currently -May 2020- stopped with 11 fixtures remaining. Our model includes two additional states of an individual, confined and quarantined, which are reached when an individual presents COVID-19 symptoms or has undergone a virus test with a positive result. The model also accounts for the interaction dynamics of players, considering three different sources of infection: the player social circle, the contact with his/her team colleagues during training sessions, and the interaction with rivals during a match. Our results highlight the influence of the days between matches, the frequency of virus tests and their sensitivity on the number of players infected at the end of the season. Following our findings, we finally propose a variety of strategies to minimise the probability that COVID-19 propagates in case the season of La Liga was re-started after the current lockdown.

9.
R Soc Open Sci ; 7(2): 191813, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32257337

RESUMO

Every now and then the cultural paradigm of a society changes. While current models of cultural shifts usually require a major exogenous or endogenous change, we propose that the mechanism underlying many paradigm shifts may just be an emergent feature of the inherent congruence among different cultural traits. We implement this idea through a population dynamics model in which individuals are defined by a vector of cultural traits that changes mainly through cultural contagion, biased by a 'cultural fitness' landscape, between contemporary individuals. Cultural traits reinforce or hinder each other (through a form of cultural epistasis) to prevent cognitive dissonance. Our main result is that abrupt paradigm shifts occur, in response to weak changes in the landscape, only in the presence of epistasis between cultural traits, and regardless of whether horizontal transmission is biased by homophily. A relevant consequence of this dynamics is the irreversible nature of paradigm shifts: the old paradigm cannot be restored even if the external changes are undone. Our model puts the phenomenon of paradigm shifts in cultural evolution in the same category as catastrophic shifts in ecology or phase transitions in physics, where minute causes lead to major collective changes.

10.
Front Microbiol ; 11: 590736, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391207

RESUMO

Perchlorate anions are produced by chemical industries and are important contaminants in certain natural ecosystems. Perchlorate also occurs in some natural and uncontaminated environments such as the Atacama Desert, the high Arctic or the Antarctic Dry Valleys, and is especially abundant on the surface of Mars. As some bacterial strains are capable of using perchlorate as an electron acceptor under anaerobic conditions, their detection is relevant for environmental monitoring on Earth as well as for the search for life on Mars. We have developed an antibody microarray with 20 polyclonal antibodies to detect perchlorate-reducing bacteria (PRB) strains and two crucial and highly conserved enzymes involved in perchlorate respiration: perchlorate reductase and chlorite dismutase. We determined the cross-reactivity, the working concentration, and the limit of detection of each antibody individually and in a multiplex format by Fluorescent Sandwich Microarray Immunoassay. Although most of them exhibited relatively high sensitivity and specificity, we applied a deconvolution method based on graph theory to discriminate between specific signals and cross-reactions from related microorganisms. We validated the system by analyzing multiple bacterial isolates, crude extracts from contaminated reactors and salt-rich natural samples from the high Arctic. The PRB detecting chip (PRBCHIP) allowed us to detect and classify environmental isolates as well as to detect similar strains by using crude extracts obtained from 0.5 g even from soils with low organic-matter levels (<103 cells/g of soil). Our results demonstrated that PRBCHIP is a valuable tool for sensitive and reliable detection of perchlorate-reducing bacteria for research purposes, environmental monitoring and planetary exploration.

11.
Nat Commun ; 10(1): 5314, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31757969

RESUMO

A wide variety of social, biological or technological systems can be described as processes taking place on networked structures in continuous interaction with other networks. We propose here a new methodology to describe, anticipate and manage, in real time, the out-of-equilibrium dynamics of processes that evolve on interconnected networks. This goal is achieved through the full analytical treatment of the phenomenology and its reduction to a two-dimensional flux diagram, allowing us to predict at every time step the dynamical consequences of modifying the links between the different ensembles. Our results are consistent with real data and the methodology can be translated to clustered networks and/or interconnected networks of any size, topology or origin, from the struggle for knowledge on innovation structures to international economic relations or disease spreading on social groups.


Assuntos
Difusão de Inovações , Conhecimento , Comportamento Cooperativo , Humanos , Modelos Teóricos , Pesquisa
12.
Curr Opin Virol ; 33: 89-95, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30121469

RESUMO

Multipartite viruses have a segmented genome encapsidated in different viral particles that, in principle, propagate independently. Current empirical knowledge on the molecular, ecological and evolutionary features underlying the very existence of multipartitism is fragmented and puzzling. Although it is generally assumed that multipartitism is viable only when propagation occurs at high multiplicity of infection, evidence indicates that severe population bottlenecks are common. Mathematical models aimed at describing the dynamics of multipartite viruses typically assign an advantage to the multipartite form to compensate for the cost of high multiplicity of infection. Since progress in the theoretical understanding of the evolutionary ecology of multipartitism is strongly conditioned by empirical advances, both aspects are jointly revised in this contribution.


Assuntos
Adaptação Biológica , Evolução Molecular , Genoma Viral , Vírus/crescimento & desenvolvimento , Vírus/genética , Modelos Teóricos
13.
Open Biol ; 8(7)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29973397

RESUMO

Evolutionary dynamics is often viewed as a subtle process of change accumulation that causes a divergence among organisms and their genomes. However, this interpretation is an inheritance of a gradualistic view that has been challenged at the macroevolutionary, ecological and molecular level. Actually, when the complex architecture of genotype spaces is taken into account, the evolutionary dynamics of molecular populations becomes intrinsically non-uniform, sharing deep qualitative and quantitative similarities with slowly driven physical systems: nonlinear responses analogous to critical transitions, sudden state changes or hysteresis, among others. Furthermore, the phenotypic plasticity inherent to genotypes transforms classical fitness landscapes into multiscapes where adaptation in response to an environmental change may be very fast. The quantitative nature of adaptive molecular processes is deeply dependent on a network-of-networks multilayered structure of the map from genotype to function that we begin to unveil.


Assuntos
Evolução Molecular , Genótipo , Aptidão Genética , Modelos Teóricos
14.
Sci Rep ; 8(1): 7291, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29720626

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

15.
Virus Evol ; 4(1): vex043, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29340211

RESUMO

Virus fitness is a complex parameter that results from the interaction of virus-specific characters (e.g. intracellular growth rate, adsorption rate, virion extracellular stability, and tolerance to mutations) with others that depend on the underlying fitness landscape and the internal structure of the whole population. Individual mutants usually have lower fitness values than the complex population from which they come from. When they are propagated and allowed to attain large population sizes for a sufficiently long time, they approach mutation-selection equilibrium with the concomitant fitness gains. The optimization process follows dynamics that vary among viruses, likely due to differences in any of the parameters that determine fitness values. As a consequence, when different mutants spread together, the number of generations experienced by each of them prior to co-propagation may determine its particular fate. In this work we attempt a clarification of the effect of different levels of population diversity in the outcome of competition dynamics. To this end, we analyze the behavior of two mutants of the RNA bacteriophage Qß that co-propagate with the wild-type virus. When both competitor viruses are clonal, the mutants rapidly outcompete the wild type. However, the outcome in competitions performed with partially optimized virus populations depends on the distance of the competitors to their clonal origin. We also implement a theoretical population dynamics model that describes the evolution of a heterogeneous population of individuals, each characterized by a fitness value, subjected to subsequent cycles of replication and mutation. The experimental results are explained in the framework of our theoretical model under two non-excluding, likely complementary assumptions: (1) The relative advantage of both competitors changes as populations approach mutation-selection equilibrium, as a consequence of differences in their growth rates and (2) one of the competitors is more robust to mutations than the other. The main conclusion is that the nearness of an RNA virus population to mutation-selection equilibrium is a key factor determining the fate of particular mutants arising during replication.

16.
Sci Rep ; 7(1): 13813, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29062002

RESUMO

The forcing that environmental variation exerts on populations causes continuous changes with only two possible evolutionary outcomes: adaptation or extinction. Here we address this topic by studying the transient dynamics of populations on complex fitness landscapes. There are three important features of realistic landscapes of relevance in the evolutionary process: fitness landscapes are rough but correlated, their fitness values depend on the current environment, and many (often most) genotypes do not yield viable phenotypes. We capture these properties by defining time-varying, holey, NK fitness landscapes. We show that the structure of the space of genotypes so generated is that of a network of networks: in a sufficiently holey landscape, populations are temporarily stuck in local networks of genotypes. Sudden jumps to neighbouring networks through narrow adaptive pathways (connector links) are possible, though strong enough local trapping may also cause decays in population growth and eventual extinction. A combination of analytical and numerical techniques to characterize complex networks and population dynamics on such networks permits to derive several quantitative relationships between the topology of the space of genotypes and the fate of evolving populations.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Redes Reguladoras de Genes , Genética Populacional , Genótipo , Dinâmica Populacional , Seleção Genética , Algoritmos , Aptidão Genética , Humanos , Modelos Genéticos , Mutação , Fenótipo
17.
Nat Commun ; 7: 13273, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27841258

RESUMO

The unpreventable connections between real networked systems have recently called for an examination of percolation, diffusion or synchronization phenomena in multilayer networks. Here we use network science and game theory to explore interactions in networks-of-networks and model these as a game for gaining importance. We propose a viewpoint where networks choose the connection strategies, in contrast with classical approaches where nodes are the active players. Specifically, we investigate how creating paths between networks leads to different Nash equilibria that determine their structural and dynamical properties. In a wide variety of cases, selecting adequate connections leads to a cooperative solution that allows weak networks to overcome the strongest opponent. Counterintuitively, each weak network can induce a global transition to such cooperative configuration regardless of the actions of the strongest network. This power of the weak reveals a critical dominance of the underdogs in the fate of networks-of-networks.


Assuntos
Algoritmos , Teoria dos Jogos , Modelos Teóricos , Redes Neurais de Computação , Redes de Comunicação de Computadores , Humanos
18.
Nucleic Acids Res ; 44(4): e40, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26553806

RESUMO

Adequate read filtering is critical when processing high-throughput data in marker-gene-based studies. Sequencing errors can cause the mis-clustering of otherwise similar reads, artificially increasing the number of retrieved Operational Taxonomic Units (OTUs) and therefore leading to the overestimation of microbial diversity. Sequencing errors will also result in OTUs that are not accurate reconstructions of the original biological sequences. Herein we present the Poisson binomial filtering algorithm (PBF), which minimizes both problems by calculating the error-probability distribution of a sequence from its quality scores. In order to validate our method, we quality-filtered 37 publicly available datasets obtained by sequencing mock and environmental microbial communities with the Roche 454, Illumina MiSeq and IonTorrent PGM platforms, and compared our results to those obtained with previous approaches such as the ones included in mothur, QIIME and USEARCH. Our algorithm retained substantially more reads than its predecessors, while resulting in fewer and more accurate OTUs. This improved sensitiveness produced more faithful representations, both quantitatively and qualitatively, of the true microbial diversity present in the studied samples. Furthermore, the method introduced in this work is computationally inexpensive and can be readily applied in conjunction with any existent analysis pipeline.


Assuntos
Bactérias/genética , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Controle de Qualidade , Algoritmos , Biodiversidade , Análise de Sequência de DNA/métodos
19.
Sci Rep ; 5: 9664, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25962603

RESUMO

We live in an ever changing biosphere that faces continuous and often stressing environmental challenges. From this perspective, much effort is currently devoted to understanding how natural populations succeed or fail in adapting to evolving conditions. In a different context, many complex dynamical systems experience critical transitions where their dynamical behaviour or internal structure changes suddenly. Here we connect both approaches and show that in rough and correlated fitness landscapes, population dynamics shows flickering under small stochastic environmental changes, alerting of the existence of tipping points. Our analytical and numerical results demonstrate that transitions at the genomic level preceded by early-warning signals are a generic phenomenon in constant and slowly driven landscapes affected by even slight stochasticity. As these genomic shifts are approached, the time to reach mutation-selection equilibrium dramatically increases, leading to the appearance of hysteresis in the composition of the population. Eventually, environmental changes significantly faster than the typical adaptation time may result in population extinction. Our work points out several indicators that are at reach with current technologies to anticipate these sudden and largely unavoidable transitions.


Assuntos
Interação Gene-Ambiente , Genética Populacional , Genoma , Modelos Genéticos
20.
Environ Sci Technol ; 49(3): 1611-20, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25565212

RESUMO

Cyanobacteria are Gram-negative photosynthetic prokaryotes that are widespread on Earth. Eutrophication and global warming make some aquatic ecosystems behave as bioreactors that trigger rapid and massive cyanobacterial growth with remarkable economic and health consequences. Rapid and efficient early warning systems are required to support decisions by water body authorities. We have produced 17 specific antibodies to the most frequent cyanobacterial strains blooming in freshwater ecosystems, some of which are toxin producers. A sandwich-type antibody microarray immunoassay (CYANOCHIP) was developed for the simultaneous testing of any of the 17 strains, or other closely related strains, in field samples from different habitats (water, rocks, and sediments). We titrated and tested all of the antibodies in succession using a fluorescent sandwich microarray immunoassay. Although most showed high specificity, we applied a deconvolution method based on graph theory to disentangle the few existing cross-reactions. The CYANOCHIP sensitivity ranged from 10(2) to 10(4) cells mL(-1), with most antibodies detecting approximately 10(2) cells mL(-1). We validated the system by testing multiple isolates and crude natural samples from freshwater reservoirs and rocks, both in the laboratory and by in situ testing in the field. The results demonstrated that CYANOCHIP is a valuable tool for the sensitive and reliable detection of cyanobacteria for early warning and research purposes.


Assuntos
Cianobactérias , Água Doce/microbiologia , Análise em Microsséries/métodos , Anticorpos , Cianobactérias/classificação , Cianobactérias/imunologia , Ecossistema , Monitoramento Ambiental/métodos , Eutrofização , Imunoensaio/métodos , Reprodutibilidade dos Testes , Espanha , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...