Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 17: 1304440, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38144211

RESUMO

The brain cortex is the structure that is typically injured in traumatic brain injury (TBI) and is anatomically connected with other brain regions, including the striatum and hypothalamus, which are associated in part with motor function and the regulation of body temperature, respectively. We investigated whether a TBI extending to the striatum could affect peripheral and core temperatures as an indicator of autonomic thermoregulatory function. Moreover, it is unknown whether thermal modulation is accompanied by hypothalamic and cortical monoamine changes in rats with motor function recovery. The animals were allocated into three groups: the sham group (sham), a TBI group with a cortical contusion alone (TBI alone), and a TBI group with an injury extending to the dorsal striatum (TBI + striatal injury). Body temperature and motor deficits were evaluated for 20 days post-injury. On the 3rd and 20th days, rats were euthanized to measure the serotonin (5-HT), noradrenaline (NA), and dopamine (DA) levels using high-performance liquid chromatography (HPLC). We observed that TBI with an injury extending to the dorsal striatum increased core and peripheral temperatures. These changes were accompanied by a sustained motor deficit lasting for 14 days. Furthermore, there were notable increases in NA and 5-HT levels in the brain cortex and hypothalamus both 3 and 20 days after injury. In contrast, rats with TBI alone showed no changes in peripheral temperatures and achieved motor function recovery by the 7th day post-injury. In conclusion, our results suggest that TBI with an injury extending to the dorsal striatum elevates both core and peripheral temperatures, causing a delay in functional recovery and increasing hypothalamic monoamine levels. The aftereffects can be attributed to the injury site and changes to the autonomic thermoregulatory functions.

2.
Psychopharmacology (Berl) ; 240(6): 1221-1234, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37086286

RESUMO

RATIONALE: Dyskinesias induced by L-3,4-dihydroxyphenylalanine, L-Dopa (LIDs), are the major complication in the pharmacological treatment of Parkinson's disease. LIDs induce overactivity of the glutamatergic cortico-striatal projections, and drugs that reduce glutamatergic overactivity exert antidyskinetic actions. Chronic administration of immepip, agonist at histamine H3 receptors (H3R), reduces LIDs and diminishes GABA and glutamate content in striatal dialysates (Avila-Luna et al., Psychopharmacology 236: 1937-1948, 2019). OBJECTIVES AND METHODS: In rats unilaterally lesioned with 6-hydroxydopamine in the substantia nigra pars compacta (SNc), we examined whether the chronic administration of immepip and their withdrawal modify LIDs, the effect of L-Dopa on glutamate and GABA content, and mRNA levels of dopamine D1 receptors (D1Rs) and H3Rs in the cerebral cortex and striatum. RESULTS: The administration of L-Dopa for 21 days induced LIDs. This effect was accompanied by increased GABA and glutamate levels in the cerebral cortex ipsi and contralateral to the lesioned SNc, and immepip administration prevented (GABA) or reduced (glutamate) these actions. In the striatum, GABA content increased in the ipsilateral nucleus, an effect prevented by immepip. L-Dopa administration had no significant effects on striatal glutamate levels. In lesioned and L-Dopa-treated animals, D1R mRNA decreased in the ipsilateral striatum, an effect prevented by immepip administration. CONCLUSIONS: Our results indicate that chronic H3R activation reduces LIDs and the overactivity of glutamatergic cortico-striatal projections, providing further evidence for an interaction between D1Rs and H3Rs in the cortex and striatum under normal and pathological conditions.


Assuntos
Discinesia Induzida por Medicamentos , Levodopa , Ratos , Masculino , Animais , Levodopa/efeitos adversos , Dopamina/metabolismo , Oxidopamina/toxicidade , Ácido Glutâmico/metabolismo , Corpo Estriado , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Córtex Cerebral/metabolismo , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...