Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Sci ; 339: 111938, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072332

RESUMO

The storage root (SR) of cassava is the main staple food in sub-Saharan Africa, where it feeds over 500 million people. However, little is known about the genetic and molecular regulation underlying its development. Unraveling such regulation would pave the way for biotechnology approaches aimed at enhancing cassava productivity. Anatomical studies indicate that SR development relies on the massive accumulation of xylem parenchyma, a cell-type derived from the vascular cambium. The C3HDZ family of transcription factors regulate cambial cells proliferation and xylem differentiation in Arabidopsis and other species. We thus aimed at identifying C3HDZ proteins in cassava and determining whether any of them shows preferential activity in the SR cambium and/or xylem. Using phylogeny and synteny studies, we identified eight C3HDZ proteins in cassava, namely MeCH3DZ1-8. We observed that MeC3HDZ1 is the MeC3HDZ gene displaying the highest expression in SR and that, within that organ, the gene also shows high expression in cambium and xylem. In-silico analyses revealed the existence of a number of potential C3HDZ targets displaying significant preferential expression in the SR. Subsequent Y1H analyses proved that MeC3HDZ1 can bind canonical C3HDZ binding sites, present in the promoters of these targets. Transactivation assays demonstrated that MeC3HDZ1 can regulate the expression of genes downstream of promoters harboring such binding sites, thereby demonstrating that MeC3HDZ1 has C3HDZ transcription factor activity. We conclude that MeC3HDZ1 may be a key factor for the regulation of storage root development in cassava, holding thus great promise for future biotechnology applications.


Assuntos
Arabidopsis , Manihot , Humanos , Manihot/genética , Manihot/metabolismo , Arabidopsis/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proliferação de Células , Xilema/genética , Xilema/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Plant Cell Environ ; 46(9): 2711-2725, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37427824

RESUMO

Plant transpiration is a fundamental process that determines plant water use efficiency (WUE), thermoregulation, nutrition, and growth. How transpiration impacts on such essential physiological aspects and how the environment modulates these effects are fundamental questions about which little is known. We investigated the genetic and environmental factors underlying natural variation in plant transpiration and water use efficiency in a population of natural Arabidopsis thaliana accessions grown under homogeneous conditions. As expected, we observed large variation of total transpiration capacity, transpiration per surface unit, and WUE among A. thaliana accessions. Despite the variation of stomatal density and ABA content in the population, WUE did not correlate with any of these parameters. On the contrary, a surprising direct correlation was found between WUE and projected leaf area, with bigger plants displaying a more efficient use of water. Importantly, genome-wide association studies further supported our observations through the identification of several loci involved in WUE variation, mutations in which caused a simultaneous reduction in plant size and a decrease in WUE. Altogether, our results strongly suggest that, although WUE depends on many parameters, plant size is an adaptive trait with respect to water use in A. thaliana.


Assuntos
Arabidopsis , Arabidopsis/fisiologia , Água , Estudo de Associação Genômica Ampla , Folhas de Planta/genética , Plantas/genética , Transpiração Vegetal/fisiologia , Estômatos de Plantas/fisiologia
3.
Methods Mol Biol ; 2642: 365-373, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36944888

RESUMO

Plants display a great diversity of particular cell types that obviously perform functions and regulations that are essential for successful growth and development, whether under optimal or adverse conditions. The functions performed by each of these particular cell types must be associated with specific transcriptomic, proteomic, and metabolic profiles that cannot be disentangled by analyzing whole plant organs and tissues. Laser microdissection is a technique for the collection of specific cell types in plant organs and tissues comprising heterogeneous cell populations. It has been successfully used for physiological and molecular studies. Laser microdissection can be applied to any plant species as long as it is possible to reliably identify the cell types of interest. Here, we describe step by step, using citrus as a model plant, a fast, simple, easy to perform, and experimentally validated protocol to collect cells from the abscission zone, a specific tissue that is difficult to access and whose activity is important in the response of plants to adverse environmental conditions.


Assuntos
Microdissecção , Proteômica , Microdissecção/métodos , Plantas/genética , Perfilação da Expressão Gênica , Lasers
4.
Development ; 149(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35723181

RESUMO

Over time, plants have evolved flexible self-organizing patterning mechanisms to adapt tissue functionality for continuous organ growth. An example of this process is the multicellular organization of cells into a vascular network in foliar organs. An important, yet poorly understood component of this process is secondary vein branching, a mechanism employed to extend vascular tissues throughout the cotyledon surface. Here, we uncover two distinct branching mechanisms during embryogenesis by analyzing the discontinuous vein network of the double mutant cotyledon vascular pattern 2 (cvp2) cvp2-like 1 (cvl1). Similar to wild-type embryos, distal veins in cvp2 cvl1 embryos arise from the bifurcation of cell files contained in the midvein, whereas proximal branching is absent in this mutant. Restoration of this process can be achieved by increasing OCTOPUS dosage as well as by silencing RECEPTOR-LIKE PROTEIN KINASE 2 (RPK2) expression. Although RPK2-dependent rescue of cvp2 cvl1 is auxin- and CLE peptide-independent, distal branching involves polar auxin transport and follows a distinct regulatory mechanism. Our work defines a genetic network that confers plasticity to Arabidopsis embryos to spatially adapt vascular tissues to organ growth.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cotilédone/genética , Cotilédone/metabolismo , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Proteínas de Membrana/metabolismo
5.
Curr Biol ; 32(12): R607-R609, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35728538

RESUMO

Vanderschuren and Agusti introduce plant storage roots.


Assuntos
Regulação da Expressão Gênica de Plantas , Raízes de Plantas
6.
Front Plant Sci ; 12: 726461, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712253

RESUMO

Fungal grapevine trunk diseases (GTDs) are some of the most pressing threats to grape production worldwide. While these diseases are associated with several fungal pathogens, Phaeomoniella chlamydospora and Phaeoacremonium minimum are important contributors to esca and Petri diseases. Recent research has linked grapevine xylem diameter with tolerance to Pa. chlamydospora in commercial rootstocks. In this study, we screen over 25 rootstocks for xylem characteristics and tolerance to both Pa. chlamydospora and Pm. minimum. Tolerance was measured by fungal incidence and DNA concentration (quantified via qPCR), while histological analyses were used to measure xylem characteristics, including xylem vessels diameter, density, and the proportion of the stem surface area covered by xylem vessels. Rootstocks were grouped into different classes based on xylem characteristics to assess the potential association between vasculature traits and pathogen tolerance. Our results revealed significant differences in all the analyzed xylem traits, and also in DNA concentration for both pathogens among the tested rootstocks. They corroborate the link between xylem vessels diameter and tolerance to Pa. chlamydospora. In Pm. minimum, the rootstocks with the widest xylem diameter proved the most susceptible. This relationship between vasculature development and pathogen tolerance has the potential to inform both cultivar choice and future rootstock breeding to reduce the detrimental impact of GTDs worldwide.

8.
Plant Cell ; 33(2): 200-223, 2021 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-33582756

RESUMO

Genome-wide gene expression maps with a high spatial resolution have substantially accelerated plant molecular science. However, the number of characterized tissues and growth stages is still small due to the limited accessibility of most tissues for protoplast isolation. Here, we provide gene expression profiles of the mature inflorescence stem of Arabidopsis thaliana covering a comprehensive set of distinct tissues. By combining fluorescence-activated nucleus sorting and laser-capture microdissection with next-generation RNA sequencing, we characterized the transcriptomes of xylem vessels, fibers, the proximal and distal cambium, phloem, phloem cap, pith, starch sheath, and epidermis cells. Our analyses classified more than 15,000 genes as being differentially expressed among different stem tissues and revealed known and novel tissue-specific cellular signatures. By determining overrepresented transcription factor binding regions in the promoters of differentially expressed genes, we identified candidate tissue-specific transcriptional regulators. Our datasets predict the expression profiles of an exceptional number of genes and allow hypotheses to be generated about the spatial organization of physiological processes. Moreover, we demonstrate that information about gene expression in a broad range of mature plant tissues can be established at high spatial resolution by nuclear mRNA profiling. Tissue-specific gene expression values can be accessed online at https://arabidopsis-stem.cos.uni-heidelberg.de/.


Assuntos
Arabidopsis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Inflorescência/genética , Caules de Planta/genética , Arabidopsis/fisiologia , Sítios de Ligação , Núcleo Celular/metabolismo , Bases de Dados Genéticas , Proteínas de Fluorescência Verde/metabolismo , Especificidade de Órgãos/genética , Floema/metabolismo , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA-Seq , Especificidade da Espécie , Fatores de Transcrição/metabolismo , Transgenes , Madeira/genética
9.
Cell Mol Life Sci ; 77(19): 3711-3728, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32193607

RESUMO

Plant vascular development is a complex process culminating in the generation of xylem and phloem, the plant transporting conduits. Xylem and phloem arise from specialized stem cells collectively termed (pro)cambium. Once developed, xylem transports mainly water and mineral nutrients and phloem transports photoassimilates and signaling molecules. In the past few years, major advances have been made to characterize the molecular, genetic and physiological aspects that govern vascular development. However, less is known about how the environment re-shapes the process, which molecular mechanisms link environmental inputs with developmental outputs, which gene regulatory networks facilitate the genetic adaptation of vascular development to environmental niches, or how the first vascular cells appeared as an evolutionary innovation. In this review, we (1) summarize the current knowledge of the mechanisms involved in vascular development, focusing on the model species Arabidopsis thaliana, (2) describe the anatomical effect of specific environmental factors on the process, (3) speculate about the main entry points through which the molecular mechanisms controlling of the process might be altered by specific environmental factors, and (4) discuss future research which could identify the genetic factors underlying phenotypic plasticity of vascular development.


Assuntos
Arabidopsis/metabolismo , Floema/metabolismo , Xilema/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Floema/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas , Raízes de Plantas/metabolismo , Estresse Fisiológico , Xilema/crescimento & desenvolvimento
10.
Proc Natl Acad Sci U S A ; 116(37): 18710-18716, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31444299

RESUMO

In plants, secondary growth results in radial expansion of stems and roots, generating large amounts of biomass in the form of wood. Using genome-wide association studies (GWAS)-guided reverse genetics in Arabidopsis thaliana, we discovered SOBIR1/EVR, previously known to control plant immunoresponses and abscission, as a regulator of secondary growth. We present anatomical, genetic, and molecular evidence indicating that SOBIR1/EVR prevents the precocious differentiation of xylem fiber, a key cell type for wood development. SOBIR1/EVR acts through a mechanism that involves BREVIPEDICELLUS (BP) and ERECTA (ER), 2 proteins previously known to regulate xylem fiber development. We demonstrate that BP binds SOBIR1/EVR promoter and that SOBIR1/EVR expression is enhanced in bp mutants, suggesting a direct, negative regulation of BP over SOBIR1/EVR expression. We show that SOBIR1/EVR physically interacts with ER and that defects caused by the sobir1/evr mutation are aggravated by mutating ER, indicating that SOBIR1/EVR and ERECTA act together in the control of the precocious formation of xylem fiber development.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Homeodomínio/metabolismo , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Madeira/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Mutação , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Proteínas Quinases/metabolismo
11.
Front Plant Sci ; 10: 663, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31244864

RESUMO

In plants, the only confirmed function for thermospermine is regulating xylem cells maturation. However, genes putatively encoding thermospermine synthases have been identified in the genomes of both vascular and non-vascular plants. Here, we verify the activity of the thermospermine synthase genes and the presence of thermospermine in vascular and non-vascular land plants as well as in the aquatic plant Chlamydomonas reinhardtii. In addition, we provide information about differential content of thermospermine in diverse organs at different developmental stages in some vascular species that suggest that, although the major role of thermospermine in vascular plants is likely to be xylem development, other potential roles in development and/or responses to stress conditions could be associated to such polyamine. In summary, our results in vascular and non-vascular species indicate that the capacity to synthesize thermospermine is conserved throughout the entire plant kingdom.

12.
R Soc Open Sci ; 6(3): 190126, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31032061

RESUMO

Unravelling the specific growth dynamics of key tissues and organs is fundamental to understand how multicellular organisms orchestrate their different growth programmes. In plants, the secondary growth (thickening) of stems and roots provides the mechanical support that plants need to achieve their developmental potential. We used conventional anatomical and microscopy techniques, image-processing software, and quantitative analysis to understand and mathematically describe the growth dynamics of the early developmental stages of secondary xylem (the main tissue developed during secondary growth). Results show that such early developmental stages are characterized by exponential expansion of secondary xylem in three dimensions in the form of an inverted cone, with a power law that describes the relationship between the area of the base and the longitudinal progression (height) of the growing secondary xylem cone over time with a scaling exponent of 2/5: the signature of allometric growth. Our work constitutes a starting point for future modelling of secondary xylem in particular and secondary growth in general.

13.
Development ; 145(23)2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30389856

RESUMO

The thickening of plant organs is supported by secondary growth, a process by which new vascular tissues (xylem and phloem) are produced. Xylem is composed of several cell types, including xylary fibers, parenchyma and vessel elements. In Arabidopsis, it has been shown that fibers are promoted by the class-I KNOX gene KNAT1 and the plant hormones gibberellins, and are repressed by a small set of receptor-like kinases; however, we lack a mechanistic framework to integrate their relative contributions. Here, we show that DELLAs, negative elements of the gibberellin signaling pathway, physically interact with KNAT1 and impair its binding to KNAT1-binding sites. Our analysis also indicates that at least 37% of the transcriptome mobilized by KNAT1 is potentially dependent on this interaction, and includes genes involved in secondary cell wall modifications and phenylpropanoid biosynthesis. Moreover, the promotion by constitutive overexpression of KNAT1 of fiber formation and the expression of genes required for fiber differentiation were still reverted by DELLA accumulation, in agreement with post-translational regulation of KNAT1 by DELLA proteins. These results suggest that gibberellins enhance fiber development by promoting KNAT1 activity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Diferenciação Celular , Giberelinas/farmacologia , Proteínas de Homeodomínio/metabolismo , Xilema/citologia , Xilema/metabolismo , Arabidopsis/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Mutação com Ganho de Função/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fenótipo , Feixe Vascular de Plantas/efeitos dos fármacos , Feixe Vascular de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Xilema/efeitos dos fármacos
14.
Nat Commun ; 9(1): 875, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29491423

RESUMO

Spatial organization of signalling events of the phytohormone auxin is fundamental for maintaining a dynamic transition from plant stem cells to differentiated descendants. The cambium, the stem cell niche mediating wood formation, fundamentally depends on auxin signalling but its exact role and spatial organization is obscure. Here we show that, while auxin signalling levels increase in differentiating cambium descendants, a moderate level of signalling in cambial stem cells is essential for cambium activity. We identify the auxin-dependent transcription factor ARF5/MONOPTEROS to cell-autonomously restrict the number of stem cells by directly attenuating the activity of the stem cell-promoting WOX4 gene. In contrast, ARF3 and ARF4 function as cambium activators in a redundant fashion from outside of WOX4-expressing cells. Our results reveal an influence of auxin signalling on distinct cambium features by specific signalling components and allow the conceptual integration of plant stem cell systems with distinct anatomies.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Câmbio/citologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Homeodomínio/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/genética , Proliferação de Células/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Reguladores de Crescimento de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Madeira/citologia , Madeira/crescimento & desenvolvimento
15.
Curr Biol ; 27(8): 1241-1247, 2017 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-28392107

RESUMO

Plant stem cell niches, the meristems, require long-distance transport of energy metabolites and signaling molecules along the phloem tissue. However, currently it is unclear how specification of phloem cells is controlled. Here we show that the genes SUPPRESSOR OF MAX2 1-LIKE3 (SMXL3), SMXL4, and SMXL5 act as cell-autonomous key regulators of phloem formation in Arabidopsis thaliana. The three genes form an uncharacterized subclade of the SMXL gene family that mediates hormonal strigolactone and karrikin signaling. Strigolactones are endogenous signaling molecules regulating shoot and root branching [1] whereas exogenous karrikin molecules induce germination after wildfires [2]. Both activities depend on the F-box protein and SCF (Skp, Cullin, F-box) complex component MORE AXILLARY GROWTH2 (MAX2) [3-5]. Strigolactone and karrikin perception leads to MAX2-dependent degradation of distinct SMXL protein family members, which is key for mediating hormonal effects [6-12]. However, the nature of events immediately downstream of SMXL protein degradation and whether all SMXL proteins mediate strigolactone or karrikin signaling is unknown. In this study we demonstrate that, within the SMXL gene family, specifically SMXL3/4/5 deficiency results in strong defects in phloem formation, altered sugar accumulation, and seedling lethality. By comparing protein stabilities, we show that SMXL3/4/5 proteins function differently to canonical strigolactone and karrikin signaling mediators, although being functionally interchangeable with those under low strigolactone/karrikin signaling conditions. Our observations reveal a fundamental mechanism of phloem formation and indicate that diversity of SMXL protein functions is essential for a steady fuelling of plant meristems.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Lactonas/farmacologia , Floema/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Floema/efeitos dos fármacos , Floema/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
Front Plant Sci ; 8: 126, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28228766

RESUMO

Abscission is a cell separation process by which plants can shed organs such as fruits, leaves, or flowers. The process takes place in specific locations termed abscission zones. In fruit crops like citrus, fruit abscission represents a high percentage of annual yield losses. Thus, understanding the molecular regulation of abscission is of capital relevance to control production. To identify genes preferentially expressed within the citrus fruit abscission zone (AZ-C), we performed a comparative transcriptomics assay at the cell type resolution level between the AZ-C and adjacent fruit rind cells (non-abscising tissue) during ethylene-promoted abscission. Our strategy combined laser microdissection with microarray analysis. Cell wall modification-related gene families displayed prominent representation in the AZ-C. Phylogenetic analyses of such gene families revealed a link between phylogenetic proximity and expression pattern during abscission suggesting highly conserved roles for specific members of these families in abscission. Our transcriptomic data was validated with (and strongly supported by) a parallel approach consisting on anatomical, histochemical and biochemical analyses on the AZ-C during fruit abscission. Our work identifies genes potentially involved in organ abscission and provides relevant data for future biotechnology approaches aimed at controlling such crucial process for citrus yield.

18.
Methods Mol Biol ; 1544: 21-26, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28050825

RESUMO

Secondary xylem (wood) accounts for a large proportion of the terrestrial biomass. Understanding how secondary xylem develops and proliferates is a challenge to enhance our capacities for biomass production. Recent reports revealed that the plant hormone strigolactone is key for the development of secondary xylem. Here, I describe a protocol for strigolactone-mediated stimulation of secondary xylem proliferation in stems. The protocol has been tested in Arabidopsis and Eucalyptus and can be adjusted to other species.


Assuntos
Lactonas/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Xilema/crescimento & desenvolvimento , Xilema/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Eucalyptus/crescimento & desenvolvimento , Eucalyptus/metabolismo , Lactonas/farmacologia , Caules de Planta/efeitos dos fármacos , Xilema/efeitos dos fármacos
19.
Planta ; 245(3): 539-548, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27900471

RESUMO

MAIN CONCLUSIONS: We have identified new potential regulators of xylem cell-type determination and cellular proliferation in cassava and studied their expression in roots. Results are highly relevant for cassava biotechnology. Cassava's root system is composed of two types of root that coexist in every individual: the fibrous and the storage roots. Whether a root becomes fibrous or storage depends on the xylem cell types that it develops: fibrous roots develop xylem fibres and vessels while storage roots develop parenchyma xylem, the starch-storing tissue. A crucial question in cassava root development is how the specific xylem cell types differentiate and proliferate in the fibrous and storage roots. Using phylogenetic, protein sequence and synteny analyses we identified (1) MeVND6, MeVND7.1, MeVND7.2, MeNST3.1 and MeNST3.2 as the potential cassava orthologues of the Arabidopsis regulators of xylem cell type determination AtVND6, AtVND7 and AtNST3; and (2) MeWOX4.1 and MeWOX4.2 as the potential cassava orthologues of the Arabidopsis cambium regulator AtWOX4. Fibrous and storage roots were anatomically characterised and tested for the expression of the identified genes. Results revealed that (1) MeVND7.1 and MeVND7.2 are expressed in the fibrous but not in the storage roots; (2) MeVND6 shows low expression in both root types; (3) MeNST3.1 is not expressed in the fibrous or storage roots, while MeNST3.2 is highly expressed in both root-types and (4) MeWOX4.1 and, to a higher level, MeWOX4.2 are expressed in both the fibrous and storage roots. Results open new avenues for research in cassava root development and for food security-oriented biotechnology programmes.


Assuntos
Câmbio/crescimento & desenvolvimento , Câmbio/genética , Regulação da Expressão Gênica de Plantas , Manihot/crescimento & desenvolvimento , Manihot/genética , Xilema/crescimento & desenvolvimento , Xilema/genética , Genes de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/anatomia & histologia , Homologia de Sequência de Aminoácidos , Sintenia/genética
20.
Mech Dev ; 130(1): 34-44, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22691403

RESUMO

The developmental plasticity of organisms is a natural consequence of adaptation. Classical approaches targeting developmental processes usually focus on genetics as the essential factor underlying phenotypic differences. However, such differences are often based on the inherent plasticity of developmental programs. Due to their dependence on environmental stimuli, plants represent ideal experimental systems in which to dissect the contribution of genetic and environmental variation to phenotypic plasticity. An evident example is the vast repertoire of growth forms observed in plant shoot systems. A fundamental factor underlying the broadness of this repertoire is the activity of secondary meristems, namely the axillary meristems that give rise to side shoots, and the cambium essential for stem thickening. Differential activities of both meristem types are crucial to the tremendous variation seen in higher plant architecture. In this review, we discuss the role of secondary meristems in the adaptation of plant growth forms, and the ways in which they integrate environmental input. In particular, we explore potential approaches for dissecting the degree to which this flexibility and its consequences for plant architecture is genetically predetermined and how much it represents an adaptive value.


Assuntos
Adaptação Fisiológica/genética , Meristema , Plantas/genética , Meristema/genética , Meristema/crescimento & desenvolvimento , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Caules de Planta/citologia , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...