Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(35): 14279-14290, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37616561

RESUMO

In the current work, a novel vanadotungstate compound, (C6H9N2)4[V2W4O19]·2H2O (1), is isolated by a simple stepwise synthesis method and characterized by a combined experimental and computational study. Molecular docking is conducted for the first time for this kind of substituted Lindqvist polyoxometalates to elucidate for potential antidiabetic activity. Hence, the modeling results revealed a significant docking score of the reported compound to bind to the active sites of α-glucosidase with the lowest binding energy of -5.7 kcal/mol, where the standard drug acarbose (ACB) had -4.6 kcal/mol binding energy. The stability of binding was enhanced by strong H-bonding, van der Waals, and electrostatic interactions occurring in the three-dimensional (3D) supramolecular network of polyanionic vanadotungstate subunits templated with organic moieties as shown by X-ray diffraction and Hirshfeld analyses. Furthermore, density functional theory (DFT) calculations supported with photophysical measurements are also discussed to predict the most chemical and biological reactivity. In this view, the complete description of electronic and biological features of (1) is enhanced by determination of the highest occupied molecular orbital (HOMO)/least unoccupied molecular orbital (LUMO) energy, electronic density, ionization potential, electron affinity, etc. These chemical descriptors, intermolecular interactions, docking score, and binding free energy estimation are essential in understanding the reactivity of this bioactive compound offering potential inhibition of the α-glucosidase enzyme.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Hipoglicemiantes , Hipoglicemiantes/química , Simulação por Computador , Compostos de Tungstênio/química , Polímeros/química , Avaliação Pré-Clínica de Medicamentos/métodos , Modelos Moleculares , Estrutura Terciária de Proteína
2.
J Mol Model ; 29(8): 229, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407799

RESUMO

CONTEXT: Nanosensor materials for the trapping and sensing of CO2 gas in the ecosystem were investigated herein to elucidate the adsorption, sensibility, selectivity, conductivity, and reactivity of silicon-doped carbon quantum dot (Si@CQD) decorated with Ag, Au, and Cu metals. The gas was studied in two configurations on its O and C sites. When the metal-decorated Si@CQD interacted with the CO2 gas on the C adsorption site of the gas, there was a decrease in all the interactions with the lowest energy gap of 1.084 eV observed in CO2_C_Cu_Si@CQD followed by CO2_C_Au_Si@CQD which recorded a slightly higher energy gap of 1.094 eV, while CO2_C_Ag_Si@CQD had an energy gap of 2.109 eV. On the O adsorption sites, a decrease was observed in CO2_O_Au_Si@CQD which had the least energy gap of 1.140 eV, whereas there was a significant increase after adsorption in CO2_O_Ag_Si@CQD and CO2_O_Cu_Si@CQD with calculated ∆E values of 2.942 eV and 3.015 eV respectively. The adsorption energy alongside the basis set supposition error (BSSE) estimation reveals that CO2_C_Au_Si@CQD, CO2_C_Ag_Si@CQD, and CO2_C_Cu_Si@CQD were weakly adsorbed, while chemisorption was present in the CO2_O_Ag_Si@CQD, CO2_O_Cu_Si@CQD, and CO2_O_Au_Si@CQD interactions. Indeed, the adsorption of CO2 on the different metal-decorated quantum dots affects the Fermi level (Ef) and the work function (Φ) of each of the decorated carbon quantum dots owed to their low Ef values and high ∆Φ% which shows that they can be a prospective work function-based sensor material. METHODS: Electronic structure theory method based on first-principle density functional theory (DFT) computation at the B3LYP-GD3(BJ)/Def2-SVP level of theory was utilized through the use of the Gaussian 16 and GaussView 6.0.16 software packages. Post-processing computational code such as multi-wavefunction was employed for result analysis and visualization.

3.
J Mol Graph Model ; 124: 108551, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399776

RESUMO

In view of the numerous environmental hazards and health challenges linked to sulfur (iv) oxide (SO2), an indirect greenhouse gas, and the resultant need to develop efficient gas nanosensor devices, this research had as its principal focus on the theoretical evaluation of the gas sensing potential of metals: Ag, Au and Cu functionalized silicon-doped quantum dots (Si@QD) for the detection and adsorption of SO2 gas investigated using the first-principles density functional theory (DFT) computation at the B3LYP-D3(BJ)/def2-SVP level of theory. Eight (8) possible adsorption modes: SO2_O_Si@QD, SO2_O_Ag_Si@QD, SO2_O_Au_Si@QD, SO2_O_Cu_Si@QD, SO2_S_Si@QD, SO2_S_Ag_Si@QD, SO2_S_Au_Si@QD, and SO2_S_Cu_Si@QD were considered based on SO2 interactions with the studied materials at the -S and -O sites of the SO2 molecule. The counterpoise correction (BSSE) showed that five of the eight interactions had favorable Ead + BSSE values ranging from -0.31 to -1.98 eV. All the eight interactions were observed to be thermodynamically favorable with ΔG and ΔH ranging from -129.01 to -200.24 kcal/mol and -158.26 to -229.73 kcal/mol respectively. Results from the topology analysis reveal that van der Waals forces occurred the greatest at the gas-sensor interphase while SO2_S_ Cu_Si@QD is predicted to have the highest sensing potency based on the conductivity and recovery time estimations. These results confirm the potential efficient feasibility of real-world device application of the metals (Ag, Au, Cu) functionalized Si-doped QDs.


Assuntos
Grafite , Nanoestruturas , Pontos Quânticos , Silício , Metais
4.
J Biomol Struct Dyn ; : 1-23, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37504959

RESUMO

Owing to the significant gap in the knowledge and understanding of the mechanisms of antimicrobial action and the development of resistance, the optimization of antimicrobial therapies therefore becomes a necessity. It is on this note, that this study seeks to both experimentally and theoretically investigate the antimicrobial efficiency of two synthesized compounds namely; 1-((4-methoxyphenyl) (morpholino)methyl)thiourea (MR1) and diethyl 4-(4-chlorophenyl)-2,6-diphenyl-1,4-dihydropyridine-3,5-dicarboxylate (HRC). Utilizing the density functional theory (DFT), the compounds were optimized at ωB97XD/6-31++G(2d, 2p) level of theory. This provided a clear explanation for their distinct reactivity and stability potentials. More so, the natural bond orbital (NBO) analysis confirmed strong intra and intermolecular interactions, which agreed with the calculated reactivity parameters and density of states (DOS). Upon assessing the antimicrobial efficacy of the synthesized compounds, it was found that they exhibited lower activity against Enterobacter and A. niger, but considerable activity against Moraxella. In contrast, they showed higher activity against B. subtilis and Trichophyton, indicating that the compounds are more effective against gram-positive bacteria than gram-negative ones. Hence, it can be asserted that the synthesized compounds have superior antifungal action than antibacterial activity. A fascinating aspect of the data is that they show interactions that are incredibly insightful, totally correlating with the simulations of both molecular docking and molecular dynamics. Therefore, the alignment between experimental findings and computational simulations strengthens the validity of the study's conclusions, emphasizing the significance of the synthesized compounds in the context of optimizing antimicrobial therapies.Communicated by Ramaswamy H. Sarma.

5.
RSC Adv ; 13(20): 13624-13641, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37152564

RESUMO

A magnesium-decorated graphene quantum dot (C24H12-Mg) surface has been examined theoretically using density functional theory (DFT) computations at the ωB97XD/6-311++G(2p,2d) level of theory to determine its sensing capability toward XH3 gases, where X = As, N and P, in four different phases: gas, benzene solvent, ethanol solvent and water. This research was carried out in different phases in order to predict the best possible phase for the adsorption of the toxic gases. Analysis of the electronic properties shows that in the different phases the energy gap follows the order NH3@C24H12-Mg < PH3@C24H12-Mg < AsH3@C24H12-Mg. The results obtained from the adsorption studies show that all the calculated adsorption energies are negative, indicating that the nature of the adsorption is chemisorption. The adsorption energies can be arranged in an increasing trend of NH3@C24H12-Mg < PH3@C24H12-Mg < AsH3@C24H12-Mg. The best adsorption performance was noted in the gas phase compared to the other studied counterparts. The interaction between the adsorbed gases and the surfaces shows a non-covalent interaction nature, as confirmed by the quantum theory of atoms-in-molecules (QTAIM) and non-covalent interactions (NCI) analysis. The overall results suggest that we can infer that the surface of the magnesium-decorated graphene quantum dot C24H12-Mg is more efficient for sensing the gas AsH3 than PH3 and NH3.

6.
ACS Omega ; 8(11): 10242-10252, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36969470

RESUMO

Rhenium complexes have been observed experimentally to exhibit good inhibitory activity against malignant cells. Hence, our motivation is to explore this activity from a theoretical perspective. In the present study, density functional theory (DFT) and in silico molecular docking approaches were utilized to unravel the unique properties of metal-based rhenium tricarbonyl complexes as effective anticancer drugs. All DFT calculations and geometric optimizations were conducted using the well-established hybrid functional B3LYP-GD(BJ)/Gen/6-311++G(d,p)/LanL2DZ computational method. The FT-IR spectroscopic characterization of the complexes: fac-[Re(Pico)(CO)3(Pz)] (R1), fac-[Re(Pico)(CO)3(Py)] (R2), fac-[Re(Dfpc)(CO)3(H2O)] (R3), fac-[Re(Dfpc)(CO)3(Pz)] (R4), fac-[Re(Dfpc)(CO)3(Py)] (R5), fac-[Re(Tfpc)(CO)3(H2O)] (R6), fac-[Re(Tfpc)(CO)3(Py)] (R7), and fac-[Re(Tfpc)(CO)3(Im)] (R8) was explored. To gain insights into the electronic structural properties, bioactivity, and stability of these complexes, the highest occupied molecular orbital-lowest unoccupied molecular orbital analysis, binding energy, and topological analysis based on quantum theory of atoms-in-molecules were considered. The anticancer activities of the complexes were measured via in silico molecular docking against human BCL-2 protein (IG5M) and proapoptotic (agonist) BAX 1 protein (450O). The results showed that the studied complexes exhibited good binding affinity (-3.25 to -10.16 kcal/mol) and could cause significant disruption of the normal physiological functions of the studied proteins. The results of DFT calculations also showed that the studied complexes exhibited good stability and are suitable candidates for the development of anticancer agents.

7.
J Mol Model ; 29(1): 31, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36595085

RESUMO

CONTEXT: Density functional theory (DFT) method was employed to investigate the electronic structure properties, excited state dynamics, charge transfer, and photovoltaic potential of benzo [1,2,5] thiadiazole fused to 3,7-dimethyl-3a,6,7,7b-tetrahydro-5H-thieno[2',3':4,5]thieno[3,2-b]pyrrole to form 3,9,12,13-tetramethyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2″,3″:4,5]pyrrolo[3.2-g]thieno[2',3':4,5]thieno[3,2-b]indole as the acceptor (A), bridge with thiophene as π-spacer to the donor moieties (D) which are 2,3-dihydrobenzo [b]thiophene-6-carboxylic acid (M4) and functionalized R, M1, M2, M3, and M5 to give a D-π-A-π-D. Here is the reverse combination for our molecules: the A-π-D-π-A type of chromophore configuration. It is also observed that tuning the dono-bridge configuration significantly increases the ease of charge transfer as the energy gap decreases in the order of 1.29 eV in M4 < 1.59 eV in M3 < 1.67 eV < 1.99 in M2 and 2.06 eV. The reorganization energy (RE) of M3 (0.0031) and M5 (0.0031) indicates an increase in the order of M3 > M5 > R > M2 > M4 > M1. The HOMO-LUMO indicates that the reactivity decreased, while the stability increased for the reference R at 0.990 eV, compared to the designed molecules M1-M5, with M1 being the least stable at 0.970 eV, while M4 exhibited the highest stability at 1.550 eV. The stability of the designed molecule decreased in the order of M4:1.550 > M3:1.257 > M5:1.197 > M2:1.010 > M1:0.970. Therefore, all results point to the electron-deficient core as an effective end-capped electron acceptor in M1-M5 compounds. As the ideal pair for successfully optimizing optoelectronic properties by reducing the HOMO-LUMO energy levels, reorganization energy, and binding energy and enhancing the absorption maximum and open-circuit voltage values in these designed molecules. METHODS: DFT and TDDFT calculations were performed with Gaussian 16 program. The modelled compounds were optimized fully using the CAM-B3LYP, WB97XD, B3LYP, and MPW1PW91 functionals with the 6-31 G (d,p) basis set. The graphs for the density of states were plotted using the PyMOlyze software. Other molecular properties like the transition density matrix (TDM) and electron density difference maps (EDD) were rendered via the Multiwfn software.

8.
J Biomol Struct Dyn ; 41(19): 10136-10160, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36519503

RESUMO

In this study, two novel derivatives of naphthalene-2-sulfonic acid: 6-(((1S,5R)-3,5-dichloro-2,4,6-triazabicyclo [z3.1.0]hex-3-en-1-yl)amino)-5-((E)-phenyldiazenyl)naphthalene-2-sulfonic acid (DTPS1) and (E)-6-((4,6-dichloro-1,3,5-triazine2-yl)amino)-4-hydroxy-3-(phenyldiazenyl)naphthalene-2-sulfonic acid (DTPS2) have been synthesized and characterized using FT-IR, UV-vis, and NMR spectroscopic techniques. Applying density functional theory (DFT) at the B3LYP, APFD, PBEPBE, HCTH, TPSSTPSS, and ωB97XD/aug-cc-pVDZ level of theories for the electronic structural properties. In-vitro analysis, molecular docking, molecular dynamic (MD) simulation of the compounds was conducted to investigate the anti-inflammatory potential using COXs enzymes. Docking indicates binding affinity of -9.57, -9.60, -6.77 and -7.37 kcal/mol for DTPS1, DTPS2, Ibuprofen and Diclofenac which agrees with in-vitro assay. Results of MD simulation, indicates sulphonic group in DTPS1 has > 30% interaction with the hydroxyl and oxygen atoms in amino acid residues, but > 35% interaction with the DTPS2. It can be said that the DTPS1 and DTPS2 can induce inhibitory effect on COXs to halt biosynthesis of prostaglandins (PGs), a chief mediator of inflammation and pain in mammals.Communicated by Ramaswamy H. Sarma.


Assuntos
Anti-Inflamatórios , Simulação de Dinâmica Molecular , Animais , Simulação de Acoplamento Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Anti-Inflamatórios/farmacologia , Percepção , Mamíferos
9.
J Biomol Struct Dyn ; 41(20): 10287-10301, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36546691

RESUMO

Various drugs such as corticosteroids, salbutamol, and ß2 agonist are available for the treatment of asthma an inflammatory disease and its symptoms, although the ingredient and the mode of action of these drugs are not clearly elucidated. Hence this research aimed at carrying out improved scientific research with respect to the use of natural product rosmarinic acid which poses minima, side effects. Herein, we first carried out extraction, isolation, and spectroscopic (FT-IR, 1H-NMR and 13C-NMR) investigation, followed by molecular modeling analysis on the naturally occurring rosmarinic acid extracted from Rosmarinus officinalis. A detailed comparison of the experimental and theoretical vibrational analysis has been carried out using five DFT functionals: BHANDH, HSEH1PBE, M06-2X, MPW3PBE and THCTHHYB with the basis set 6-311++G (d, p) to investigate into the structural, reactivity, and stability of the isolated compound. Frontier molecular orbital analysis and appropriate quantum descriptors were calculated. Results showed that the compound was more stable at M06-2X and more reactive at HSEH1PBE with an energy gap of 6.43441 eV and 3.8047 eV, respectively, which was later affirmed by the global quantum reactivity parameters. From natural bond orbital analysis, π* →π* is the major contributor to electron transition with the summation perturbation energy of 889.57 kcal/mol, while π →π* had the perturbation energy totaling of 145.3 kcal/mol. Geometry analysis shows BHANDH to have lower bond length values and lesser deviation from 120° in carbon-carbon angle. The potency of the title molecule as an asthma drug was tested via a molecular docking approach and the binding score of -8.2 kcal/mol was observed against -7.0 of salbutamol standard drug, suggesting romarinic acid as a potential natural organic treatment for asthma.Communicated by Ramaswamy H. Sarma.


Assuntos
Asma , Intuição , Humanos , Simulação de Acoplamento Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Teoria Quântica , Albuterol , Carbono , Análise Espectral Raman , Espectrofotometria Ultravioleta , Vibração , Termodinâmica , Ácido Rosmarínico
10.
ACS Omega ; 7(50): 46183-46202, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36570229

RESUMO

This study focused on the potential of aluminum nitride (Al12N12) and aluminum phosphide (Al12P12) nanomaterials as anode electrodes of lithium-ion (Li-ion), sodium-ion (Na-ion), and potassium-ion (K-ion) batteries as investigated via density functional theory (DFT) calculations at PBE0-D3, M062X-D3, and DSDPBEP86 as the reference method. The results show that the Li-ion battery has a higher cell voltage with a binding energy of -1.210 eV and higher reduction potential of -6.791 kcal/mol compared to the sodium and potassium ion batteries with binding energies of -0.749 and -0.935 eV and reduction potentials of -6.414 and -6.513 kcal/mol, respectively, using Al12N12 material. However, in Al12P12, increases in the binding energy and reduction potential were observed in the K-ion battery with values -1.485 eV and -7.535 kcal/mol higher than the Li and Na ion batteries with binding energy and reduction potential -1.483, -1.311 eV and -7.071, -7.184 eV, respectively. Finally, Al12N12 and Al12P12 were both proposed as novel anode electrodes in Li-ion and K-ion batteries with the highest performances.

11.
ACS Omega ; 7(39): 35118-35135, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36211036

RESUMO

Upon various investigations conducted in search for a nanosensor material with the best sensing performance, the need to explore these materials cannot be overemphasized as materials associated with best sensing attributes are of vast interest to researchers. Hence, there is a need to investigate the adsorption performances of various metal-doped fullerene surfaces: C59Au, C59Hf, C59Hg, C59Ir, C59Os, C59Pt, C59Re, and C59W on thiourea [SC(NH2)2] molecule using first-principles density functional theory computation. Comparative adsorption study has been carried out on various adsorption models of four functionals, M06-2X, M062X-D3, PBE0-D3, and ωB97XD, and two double-hybrid (DH) functionals, DSDPBEP86 and PBE0DH, as reference at Gen/def2svp/LanL2DZ. The visual study of weak interactions such as quantum theory of atoms in molecule analysis and noncovalent interaction analysis has been invoked to ascertain these results, and hence we arrived at a conclusive scientific report. In all cases, the weak adsorption observed is best described as physisorption phenomena, and CH4N2S@C59Pt complex exhibits better sensing attributes than its studied counterparts in the interactions between thiourea molecule and transition metal-doped fullerene surfaces. Also, in the comparative adsorption study, DH density functionals show better performance in estimating the adsorption energies due to their reduced mean absolute deviation (MAD) and root-mean-square deviation (RMSD) values of (MAD = 1.0305, RMSD = 1.6277) and (MAD = 0.9965, RMSD = 1.6101) in DSDPBEP86 and PBE0DH, respectively.

13.
J Mol Model ; 28(9): 245, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927595

RESUMO

The manipulation of the active dye material for application in dye-sensitized solar cell (DSSC) using simple or bulky group substituents is necessary for improved dye performance. Herein, we carried out a combined experimental and theoretical studies of different alkylated novel reactive (E)-6-(2,3-dihydroxyl naphthalene diazinyl)-1H-benzoisoquinoline-1,3-dione azo-based dyes using spectral (FTIR, UV-visible, and NMR) analysis and electronic structure theory method based first principle density functional theory (DFT) calculations to investigate the molecular electronic properties, structural analysis, excitation behavior, and the theoretical potential application in photovoltaic cell. The synthesized azo dye (azoD) was theoretically modeled by varying the number of alkyl chains denoted as AzoD1, AzoD2, AzoD3, and AzoD4 to represent azo dyes having ten (10), twelve (12), fourteen (14), and sixteen (16) alkyl chain length respectively. From the natural bond orbital (NBO) analysis, the higher stabilization energies, 227.80 and 227.77 kcal/mol respectively, recorded for AzoD1 and AzoD4 may be due to extra orbital contribution by π*(N21-N22) to π*C54-C56 31.19 eV for AzoD1 and π*(N21-N22) → π*(C53-C55) 31.43 eV AzoD4 confirming that chain length affected the orbital interaction of the molecules. The driving force (ΔGinject) of electron injection into the TiO2 surface (- 1.92 to - 1.93) shown in this study is indicative that alkylated azo dyes are good for improved DSSCs performance. Again, the open circuit voltage (Voc) of 1.090 (AzoD1), 1.092 (AzoD2), 1.093 (AzoD3), and 1.095 (AzoD4) are also evidence of the suitability of azo dyes as photosensitizers. All the spectroscopic analysis, FTIR, UV-visible, and NMR combined with theoretical calculations, provided accurate data for characterizing the titled azo dye compound and showed that it has good photophysical properties. The presence of alkyl groups and chain length promoted the stability of the dyes thereby making them suitable for application in DSSCs. Increase in chain length as well enhanced the electron injection into the conduction band of the semiconductor.

14.
ACS Omega ; 7(16): 13704-13720, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35559178

RESUMO

The application of plain cycloalkanes and heterocyclic derivatives in the synthesis of valuable natural products and pharmacologically active intermediates has increased tremendously in recent times with much attention being paid to the lower cycloalkane members. The structural and molecular properties of higher seven-membered and nonaromatic heterocyclic derivatives are less known despite their stable nature and vast application; thus, an insight into their structural and electronic properties is still needed. Appropriate quantum chemical calculations utilizing the ab initio (MP2) method, meta-hybrid (M06-2X) functional, and long-range-separated functionals (ωB97XD) have been utilized in this work to investigate the structural reactivity, stability, and behavior of substituents on cycloheptane (CHP) and its derivatives: azepane, oxepane, thiepane, fluorocycloheptane (FCHP), bromocycloheptane (BrCHP), and chlorocycloheptane (ClCHP). Molecular global reactivity descriptors such as Fukui function, frontier molecular orbitals (FMOs), and molecular electrostatic potential were computed and compared with lower members. The results of two population methods CHELPG and Atomic Dipole Corrected Hirshfeld Charges (ADCH) were equally compared to scrutinize the charge distribution in the molecules. The susceptibility of intramolecular interactions between the substituents and cycloalkane ring is revealed by natural bond orbital analysis and intramolecular weak interactions by the independent gradient model (IGM). Other properties such as atomic density of states, intrinsic bond strength index (IBSI), and dipole moments are considered. It is acclaimed that the strain effect is a major determinant effect in the energy balance of cyclic molecules; thus, the ring strain energies and validation of spectroscopic specificities with reference to the X-ray crystallographic data are also considered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...