Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(9): e29996, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38698970

RESUMO

The global need for energy is increasing at a high rate and is expected to double or increase by 50%, according to some studies, in 30 years. As a result, it is essential to look into alternative methods of producing power. Solar photovoltaic (PV) power plants utilize the sun's clean energy, but they're not always dependable since they depend on weather patterns and requires vast amount of land. Space-based solar power (SBSP) has emerged as the potential solution to this issue. SBSP can provide 24/7 baseload carbon-free electricity with power density over 10 times greater than terrestrial alternatives while requiring far less land. Solar power is collected and converted in space to be sent back to Earth via Microwave or laser wirelessly and used as electricity. However, harnessing its full potential necessitates tackling substantial technological obstacles in wireless power transmission across extensive distances in order to efficiently send power to receivers on the ground. When it comes to achieving a net-zero goal, the SBSP is becoming more viable option. This paper presents a review of wireless power transmission systems and an overview of SBSP as a comprehensive system. To introduce the state-of-the-art information, the properties of the system and modern SBSP models along with application and spillover effects with regard to different sectors was examined. The challenges and risks are discussed to address the key barriers for successful project implementation. The technological obstacles stem from the fact that although most of the technology is already available none are actually efficient enough for deployment so with, private enterprises entering space race and more efficient system, the cost of the entire system that prevented this notion from happening is also decreasing. With incremental advances in key areas and sustained investment, SBSP integrated with other renewable could contribute significantly to cross-sector decarbonization.

2.
Heliyon ; 10(5): e26503, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38444502

RESUMO

A Digital Twin (DT) is a digital copy or virtual representation of an object, process, service, or system in the real world. It was first introduced to the world by the National Aeronautics and Space Administration (NASA) through its Apollo Mission in the '60s. It can successfully design a virtual object from its physical counterpart. However, the main function of a digital twin system is to provide a bidirectional data flow between the physical and the virtual entity so that it can continuously upgrade the physical counterpart. It is a state-of-the-art iterative method for creating an autonomous system. Data is the brain or building block of any digital twin system. The articles that are found online cover an individual field or two at a time regarding data analysis technology. There are no overall studies found regarding this manner online. The purpose of this study is to provide an overview of the data level in the digital twin system, and it involves the data at various phases. This paper will provide a comparative study among all the fields in which digital twins have been applied in recent years. Digital twin works with a vast amount of data, which needs to be organized, stored, linked, and put together, which is also a motive of our study. Data is essential for building virtual models, making cyber-physical connections, and running intelligent operations. The current development status and the challenges present in the different phases of digital twin data analysis have been discussed. This paper also outlines how DT is used in different fields, like manufacturing, urban planning, agriculture, medicine, robotics, and the military/aviation industry, and shows a data structure based on every sector using recent review papers. Finally, we attempted to give a horizontal comparison based on the features of the data across various fields, to extract the commonalities and uniqueness of the data in different sectors, and to shed light on the challenges at the current level as well as the limitations and future of DT from a data standpoint.

3.
Front Robot AI ; 10: 1202584, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37953963

RESUMO

Soft robots are becoming more popular because they can solve issues stiff robots cannot. Soft component and system design have seen several innovations recently. Next-generation robot-human interactions will depend on soft robotics. Soft material technologies integrate safety at the material level, speeding its integration with biological systems. Soft robotic systems must be as resilient as biological systems in unexpected, uncontrolled situations. Self-healing materials, especially polymeric and elastomeric ones, are widely studied. Since most currently under-development soft robotic systems are composed of polymeric or elastomeric materials, this finding may provide immediate assistance to the community developing soft robots. Self-healing and damage-resilient systems are making their way into actuators, structures, and sensors, even if soft robotics remains in its infancy. In the future, self-repairing soft robotic systems composed of polymers might save both money and the environment. Over the last decade, academics and businesses have grown interested in soft robotics. Despite several literature evaluations of the soft robotics subject, there seems to be a lack of systematic research on its intellectual structure and development despite the rising number of articles. This article gives an in-depth overview of the existing knowledge base on damage resistance and self-healing materials' fundamental structure and classifications. Current uses, problems with future implementation, and solutions to those problems are all included in this overview. Also discussed are potential applications and future directions for self-repairing soft robots.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...