Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
1.
J Exp Bot ; 75(7): 1997-2012, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38064717

RESUMO

In this study, a chilli pepper (Capsicum annuum) panel for post-harvest carotenoid retention was studied to elucidate underlying mechanisms associated with this commercial trait of interest. Following drying and storage, some lines within the panel had an increase in carotenoids approaching 50% compared with the initial content at the fresh fruit stage. Other lines displayed a 25% loss of carotenoids. The quantitative determination of carotenoid pigments with concurrent cellular analysis indicated that in most cases, pepper fruit with thicker (up to 4-fold) lipid exocarp layers and smooth surfaces exhibit improved carotenoid retention properties. Total cutin monomer content increased in medium/high carotenoid retention fruits and subepidermal cutin deposits were responsible for the difference in exocarp thickness. Cutin biosynthesis and cuticle precursor transport genes were differentially expressed between medium/high and low carotenoid retention genotypes, and this supports the hypothesis that the fruit cuticle can contribute to carotenoid retention. Enzymatic degradation of the cuticle and cell wall suggests that in Capsicum the carotenoids (capsanthin and its esters) are embedded in the lipidic exocarp layer. This was not the case in tomato. Collectively, the data suggest that the fruit cuticle could provide an exploitable resource for the enhancement of fruit quality.


Assuntos
Capsicum , Capsicum/metabolismo , Frutas/metabolismo , Carotenoides/metabolismo
2.
Plant Cell Environ ; 47(2): 664-681, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37927215

RESUMO

Despite decades of research resulting in a comprehensive understanding of epicuticular wax metabolism, the function of these almost ubiquitous metabolites in plant-herbivore interactions remains unresolved. In this study, we examined the effects of CRISPR-induced knockout mutations in four Nicotiana glauca (tree tobacco) wax metabolism genes. These mutations cause a wide range of changes in epicuticular wax composition, leading to altered interactions with insects and snails. Three interaction classes were examined: chewing herbivory by seven caterpillars and one snail species, phloem feeding by Myzus persicae (green peach aphid) and oviposition by Bemisia tabaci (whitefly). Although total wax load and alkane abundance did not affect caterpillar growth, a correlation across species, showed that fatty alcohols, a minor component of N. glauca surface waxes, negatively affected the growth of both a generalist caterpillar (Spodoptera littoralis) and a tobacco-feeding specialist (Manduca sexta). This negative correlation was overshadowed by the stronger effect of anabasine, a nicotine isomer, and was apparent when fatty alcohols were added to an artificial lepidopteran diet. By contrast, snails fed more on waxy leaves. Aphid reproduction and feeding activity were unaffected by wax composition but were potentially affected by altered cutin composition. Wax crystal morphology could explain the preference of B. tabaci to lay eggs on waxy wild-type plants relative to both alkane and fatty alcohol-deficient mutants. Together, our results suggest that the varied responses among herbivore classes and species are likely to be a consequence of the co-evolution that shaped the specific effects of different surface wax components in plant-herbivore interactions.


Assuntos
Álcoois Graxos , Herbivoria , Animais , Feminino , Herbivoria/fisiologia , Ceras , Alcanos , Produtos do Tabaco
6.
Plant J ; 115(4): 871, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37608589
7.
Nat Commun ; 14(1): 4540, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37500644

RESUMO

Tomato is the highest value fruit and vegetable crop worldwide, yet produces α-tomatine, a renowned toxic and bitter-tasting anti-nutritional steroidal glycoalkaloid (SGA) involved in plant defense. A suite of modifications during tomato fruit maturation and ripening converts α-tomatine to the non-bitter and less toxic Esculeoside A. This important metabolic shift prevents bitterness and toxicity in ripe tomato fruit. While the enzymes catalyzing glycosylation and hydroxylation reactions in the Esculeoside A pathway have been resolved, the proposed acetylating step remains, to date, elusive. Here, we discovered that GAME36 (GLYCOALKALOID METABOLISM36), a BAHD-type acyltransferase catalyzes SGA-acetylation in cultivated and wild tomatoes. This finding completes the elucidation of the core Esculeoside A biosynthetic pathway in ripe tomato, allowing reconstitution of Esculeoside A production in heterologous microbial and plant hosts. The involvement of GAME36 in bitter SGA detoxification pathway points to a key role in the evolution of sweet-tasting tomato as well as in the domestication and breeding of modern cultivated tomato fruit.


Assuntos
Solanum lycopersicum , Frutas/metabolismo , Aciltransferases/metabolismo , Vias Biossintéticas , Melhoramento Vegetal
8.
Nat Plants ; 9(5): 817-831, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37127748

RESUMO

Modulation of the endocannabinoid system is projected to have therapeutic potential in almost all human diseases. Accordingly, the high demand for novel cannabinoids stimulates the discovery of untapped sources and efficient manufacturing technologies. Here we explored Helichrysum umbraculigerum, an Asteraceae species unrelated to Cannabis sativa that produces Cannabis-type cannabinoids (for example, 4.3% cannabigerolic acid). In contrast to Cannabis, cannabinoids in H. umbraculigerum accumulate in leaves' glandular trichomes rather than in flowers. The integration of de novo whole-genome sequencing data with unambiguous chemical structure annotation, enzymatic assays and pathway reconstitution in Nicotiana benthamiana and in Saccharomyces cerevisiae has uncovered the molecular and chemical features of this plant. Apart from core biosynthetic enzymes, we reveal tailoring ones producing previously unknown cannabinoid metabolites. Orthology analyses demonstrate that cannabinoid synthesis evolved in parallel in H. umbraculigerum and Cannabis. Our discovery provides a currently unexploited source of cannabinoids and tools for engineering in heterologous hosts.


Assuntos
Canabinoides , Cannabis , Humanos , Canabinoides/metabolismo , Cannabis/genética , Flores/metabolismo , Folhas de Planta/metabolismo
9.
Plant J ; 114(5): 1115-1131, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37095649

RESUMO

Plants developed sophisticated mechanisms to perceive environmental stimuli and generate appropriate signals to maintain optimal growth and stress responses. A fascinating strategy employed by plants is the use of long-distance mobile signals which can trigger local and distant responses across the entire plant. Some metabolites play a central role as long-distance mobile signals allowing plants to communicate across tissues and mount robust stress responses. In this review, we summarize the current knowledge regarding the various long-distance mobile metabolites and their functions in stress response and signaling pathways. We also raise questions with respect to how we can identify new mobile metabolites and engineer them to improve plant health and resilience.


Assuntos
Plantas , Transdução de Sinais , Transdução de Sinais/fisiologia , Plantas/metabolismo
10.
Nat Plants ; 9(5): 785-802, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37024660

RESUMO

The plant hormone gibberellin (GA) regulates multiple developmental processes. It accumulates in the root elongating endodermis, but how it moves into this cell file and the significance of this accumulation are unclear. Here we identify three NITRATE TRANSPORTER1/PEPTIDE TRANSPORTER (NPF) transporters required for GA and abscisic acid (ABA) translocation. We demonstrate that NPF2.14 is a subcellular GA/ABA transporter, presumably the first to be identified in plants, facilitating GA and ABA accumulation in the root endodermis to regulate suberization. Further, NPF2.12 and NPF2.13, closely related proteins, are plasma membrane-localized GA and ABA importers that facilitate shoot-to-root GA12 translocation, regulating endodermal hormone accumulation. This work reveals that GA is required for root suberization and that GA and ABA can act non-antagonistically. We demonstrate how the clade of transporters mediates hormone flow with cell-file-specific vacuolar storage at the phloem unloading zone, and slow release of hormone to induce suberin formation in the maturation zone.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Ácido Abscísico/metabolismo , Giberelinas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Arabidopsis/metabolismo , Transportadores de Nitrato , Hormônios/metabolismo , Regulação da Expressão Gênica de Plantas
11.
Proc Natl Acad Sci U S A ; 120(12): e2217383120, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36930598

RESUMO

This year marks the 25th anniversary of the coinage of the term metabolome [S. G. Oliver et al., Trends Biotech. 16, 373-378 (1998)]. As the field rapidly advances, it is important to take stock of the progress which has been made to best inform the disciplines future. While a medical-centric perspective on metabolomics has recently been published [M. Giera et al., Cell Metab. 34, 21-34 (2022)], this largely ignores the pioneering contributions made by the plant and microbial science communities. In this perspective, we provide a contemporary overview of all fields in which metabolomics is employed with particular emphasis on both methodological and application breakthroughs made in plant and microbial sciences that have shaped this evolving research discipline from the very early days of its establishment. This will not cover all types of metabolomics assays currently employed but will focus mainly on those utilizing mass spectrometry-based measurements since they are currently by far the most prominent. Having established the historical context of metabolomics, we will address the key challenges currently facing metabolomics and offer potential approaches by which these can be faced. Most salient among these is the fact that the vast majority of mass features are as yet not annotated with high confidence; what we may refer to as definitive identification. We discuss the potential of both standard compound libraries and artificial intelligence technologies to address this challenge and the use of natural variance-based approaches such as genome-wide association studies in attempt to assign specific functions to the myriad of structurally similar and complex specialized metabolites. We conclude by stating our contention that as these challenges are epic and that they will need far greater cooperative efforts from biologists, chemists, and computer scientists with an interest in all kingdoms of life than have been made to date. Ultimately, a better linkage of metabolome and genome data will likely also be needed particularly considering the Earth BioGenome Project.


Assuntos
Inteligência Artificial , Estudo de Associação Genômica Ampla , Metaboloma , Metabolômica , Plantas/genética , Plantas/metabolismo
12.
Anal Chem ; 95(2): 1652-1662, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36594613

RESUMO

In-source fragmentation (ISF) is a naturally occurring phenomenon in various ion sources including soft ionization techniques such as matrix-assisted laser desorption/ionization (MALDI). It has traditionally been minimized as it makes the dataset more complex and often leads to mis-annotation of metabolites. Here, we introduce an approach termed PICA (for pixel intensity correlation analysis) that takes advantage of ISF in MALDI imaging to increase confidence in metabolite identification. In PICA, the extraction and association of in-source fragments to their precursor ion results in "pseudo-MS/MS spectra" that can be used for identification. We examined PICA using three different datasets, two of which were published previously and included validated metabolites annotation. We show that highly colocalized ions possessing Pearson correlation coefficient (PCC) ≥ 0.9 for a given precursor ion are mainly its in-source fragments, natural isotopes, adduct ions, or multimers. These ions provide rich information for their precursor ion identification. In addition, our results show that moderately colocalized ions (PCC < 0.9) may be structurally related to the precursor ion, which allows for the identification of unknown metabolites through known ones. Finally, we propose three strategies to reduce the total computation time for PICA in MALDI imaging. To conclude, PICA provides an efficient approach to extract and group ions stemming from the same metabolites in MALDI imaging and thus allows for high-confidence metabolite identification.


Assuntos
Espectrometria de Massas em Tandem , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Íons
13.
New Phytol ; 237(5): 1574-1589, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36369885

RESUMO

Despite decades of extensive study, the role of cuticular lipids in sustaining plant fitness is far from being understood. We utilized genome-edited tree tobacco (Nicotiana glauca) to investigate the significance of different classes of epicuticular wax in abiotic stress such as cuticular water loss, drought, and light response. We generated mutants displaying a range of wax compositions. Four wax mutants and one cutin mutant were extensively investigated for alterations in their response to abiotic factors. Although the mutations led to elevated cuticular water loss, the wax mutants did not display elevated transpiration or reduced growth under nonstressed conditions. However, under drought, plants lacking alkanes were unable to reduce their transpiration, leading to leaf death, impaired recovery, and stem cracking. By contrast, plants deficient in fatty alcohols exhibited elevated drought tolerance, which was part of a larger trend of plant phenotypes not clustering by a glossy/glaucous appearance in the parameters examined in this study. We conclude that although alkanes have little effect on whole N. glauca transpiration and biomass gain under normal, nonstressed conditions, they are essential during drought responses, since they enable plants to seal their cuticle upon stomatal closure, thereby reducing leaf death and facilitating a speedy recovery.


Assuntos
Secas , Nicotiana , Nicotiana/genética , Nicotiana/metabolismo , Água/metabolismo , Folhas de Planta/fisiologia , Alcanos , Ceras , Regulação da Expressão Gênica de Plantas , Epiderme Vegetal/metabolismo
14.
Plant J ; 113(1): 23-25, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36423223

RESUMO

In a recent paper in Nature, Edith Heard from the European Molecular Biology Laboratory (EMBL) suggested that molecular biologists should 'reconnect with nature' by diversifying sampling locations. Although this approach has its own benefits, we suggest that advanced methods should rather be used to take hypothesis-based experiments to nature, thereby supplying a much-needed context for experimentation under controlled conditions. Following the CRISPR (clustered regularly interspaced short palindromic repeats) revolution, this approach has become accessible to many research groups. For the past several years we have developed the groundwork and initiated such experimentation. This included the assembly of a mobile laboratory on a four-wheel drive truck and examining genome-edited metabolic mutants in wild tree tobacco (Nicotiana glauca), grown in nature. Our findings included both targeted answers to focused questions, but also surprising results that could only be reached while working in natural settings.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Genoma , Edição de Genes/métodos
15.
Front Mol Biosci ; 9: 953189, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465559

RESUMO

Brassica rapa (B. rapa) and its subspecies contain many bioactive metabolites that are important for plant defense and human health. This study aimed at investigating the metabolite composition and variation among a large collection of B. rapa genotypes, including subspecies and their accessions. Metabolite profiling of leaves of 102 B. rapa genotypes was performed using ultra-performance liquid chromatography coupled with a photodiode array detector and quadrupole time-of-flight mass spectrometry (UPLC-PDA-QTOF-MS/MS). In total, 346 metabolites belonging to different chemical classes were tentatively identified; 36 out of them were assigned with high confidence using authentic standards and 184 were those reported in B. rapa leaves for the first time. The accumulation and variation of metabolites among genotypes were characterized and compared to their phylogenetic distance. We found 47 metabolites, mostly representing anthocyanins, flavonols, and hydroxycinnamic acid derivatives that displayed a significant correlation to the phylogenetic relatedness and determined four major phylometabolic branches; 1) Chinese cabbage, 2) yellow sarson and rapid cycling, 3) the mizuna-komatsuna-turnip-caitai; and 4) a mixed cluster. These metabolites denote the selective pressure on the metabolic network during B. rapa breeding. We present a unique study that combines metabolite profiling data with phylogenetic analysis in a large collection of B. rapa subspecies. We showed how selective breeding utilizes the biochemical potential of wild B. rapa leading to highly diverse metabolic phenotypes. Our work provides the basis for further studies on B. rapa metabolism and nutritional traits improvement.

17.
Curr Opin Plant Biol ; 69: 102288, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35987012

RESUMO

Plant response to pathogens attacks generally comes at the expense of growth. Defense priming is widely accepted as an efficient strategy used for augmenting resistance with reduced fitness in terms of growth and yield. Plant-derived small molecules, both primary as well as secondary metabolites, can function as activators to prime plant defense. Amino acids and their derivatives regulate numerous aspects of plant growth and development, and biotic and abiotic stress responses. In this review, we discuss the recent progress in understanding the roles of amino acids and related molecules in defense priming and their link with plant growth. We also highlight some of the outstanding questions and provide an outlook on the prospects of 'engineering' the tradeoff between defense and growth in plants.


Assuntos
Aminoácidos , Plantas , Plantas/genética , Estresse Fisiológico
18.
Planta ; 256(2): 28, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35781548

RESUMO

KEY MESSAGE: AtMYB31, a R2R3-MYB transcription factor that modulates wax biosynthesis in reproductive tissues, is involved in seed development in Arabidopsis. R2R3-MYB transcription factors play important roles in plant development; yet, the exact role of each of them remains to be resolved. Here we report that the Arabidopsis AtMYB31 is required for wax biosynthesis in epidermis of reproductive tissues, and is involved in seed development. AtMYB31 was ubiquitously expressed in both vegetative and reproductive tissues with higher expression levels in siliques and seeds, while AtMYB31 was localized to the nucleus and cytoplasm. Loss of function of AtMYB31 reduced wax accumulation in the epidermis of silique and flower tissues, disrupted seed coat epidermal wall development and mucilage production, altered seed proanthocyanidin and polyester content. AtMYB31 could direct activate expressions of several wax biosynthetic target genes. Altogether, AtMYB31, a R2R3-MYB transcription factor, regulates seed development in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Sementes , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Nat Prod Rep ; 39(7): 1510-1530, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35735199

RESUMO

Covering: 2017 to 2022Mass spectrometry imaging (MSI) has become a mature molecular imaging technique that is well-matched for natural product (NP) discovery. Here we present a brief overview of MSI, followed by a thorough discussion of different MSI applications in NP research. This review will mainly focus on the recent progress of MSI in plants and microorganisms as they are the main producers of NPs. Specifically, the opportunity and potential of combining MSI with other imaging modalities and stable isotope labeling are discussed. Throughout, we focus on both the strengths and weaknesses of MSI, with an eye on future improvements that are necessary for the progression of MSI toward routine NP studies. Finally, we discuss new areas of research, future perspectives, and the overall direction that the field may take in the years to come.


Assuntos
Produtos Biológicos , Espectrometria de Massas/métodos , Imagem Molecular/métodos , Plantas
20.
Plant Cell ; 34(9): 3168-3182, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35678568

RESUMO

Chemical exchange often serves as the first step in plant-microbe interactions and exchanges of various signals, nutrients, and metabolites continue throughout the interaction. Here, we highlight the role of metabolite exchanges and metabolic crosstalk in the microbiome-root-shoot-environment nexus. Roots secret a diverse set of metabolites; this assortment of root exudates, including secondary metabolites such as benzoxazinoids, coumarins, flavonoids, indolic compounds, and terpenes, shapes the rhizosphere microbiome. In turn, the rhizosphere microbiome affects plant growth and defense. These inter-kingdom chemical interactions are based on a metabolic circular economy, a seemingly wasteless system in which rhizosphere members exchange (i.e. consume, reuse, and redesign) metabolites. This review also describes the recently discovered phenomenon "Systemically Induced Root Exudation of Metabolites" in which the rhizosphere microbiome governs plant metabolism by inducing systemic responses that shift the metabolic profiles of root exudates. Metabolic exchange in the rhizosphere is based on chemical gradients that form specific microhabitats for microbial colonization and we describe recently developed high-resolution methods to study chemical interactions in the rhizosphere. Finally, we propose an action plan to advance the metabolic circular economy in the rhizosphere for sustainable solutions to the cumulative degradation of soil health in agricultural lands.


Assuntos
Microbiota , Rizosfera , Raízes de Plantas , Solo , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...