Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiologie (Heidelb) ; 62(6): 496-503, 2022 Jun.
Artigo em Alemão | MEDLINE | ID: mdl-35925059

RESUMO

BACKGROUND: Magnetic particle imaging offers far-reaching potential with a unique range of applications. OBJECTIVES: Identification of application scenarios with added value for clinical use. METHODS: Overview of previous application scenarios in phantom and small animal models, evaluation of dual-use potential. RESULTS: With its unique application profile, magnetic particle imaging offers a solution for clinical use where common, established imaging techniques reach their limits. As a tracer imaging technique, it is particularly characterized by its high speed, sensitivity and contrast-to-noise ratio. The low magnetic fields and low power consumption allow imaging to be mobile and taken to locations that were previously inaccessible. CONCLUSION: Magnetic particle imaging has seen rapid development in recent years. The applications demonstrated in the small animal model and phantom were able to support the versatility and added value of the method. With the availability of human imaging systems, the technology must face clinical verification studies.


Assuntos
Diagnóstico por Imagem , Campos Magnéticos , Animais , Humanos , Imagens de Fantasmas
2.
IEEE Trans Med Imaging ; 41(11): 3301-3308, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35709119

RESUMO

Vascular interventions are a promising application of Magnetic Particle Imaging enabling a high spatial and temporal resolution without using ionizing radiation. The possibility to visualize the vessels as well as the devices, especially at the same time using multi-contrast approaches, enables a higher accuracy for diagnosis and treatment of vascular diseases. Different techniques to make devices MPI visible have been introduced so far, such as varnish markings or filling of balloons. However, all approaches include challenges for in vivo applications, such as the stability of the varnishing or the visibility of tracer filled balloons in deflated state. In this contribution, we present for the first time a balloon catheter that is molded from a granulate incorporating nanoparticles and can be visualized sufficiently in MPI. Computed tomography is used to show the homogeneous distribution of particles within the material. Safety measurements confirm that the incorporation of nanoparticles has no negative effect on the balloon. A dynamic experiment is performed to show that the inflation as well as deflation of the balloon can be imaged with MPI.


Assuntos
Diagnóstico por Imagem , Nanopartículas de Magnetita , Diagnóstico por Imagem/métodos , Catéteres , Fenômenos Magnéticos
3.
Nanomaterials (Basel) ; 12(10)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35630979

RESUMO

The purpose of this work was to develop instrument markers that are visible in both magnetic particle imaging (MPI) and magnetic resonance imaging (MRI). The instrument markers were based on two different magnetic nanoparticle types (synthesized in-house KLB and commercial Bayoxide E8706). Coatings containing one of both particle types were fabricated and measured with a magnetic particle spectrometer (MPS) to estimate their MPI performance. Coatings based on both particle types were then applied on a segment of a nonmetallic guidewire. Imaging experiments were conducted using a commercial, preclinical MPI scanner and a preclinical 1 tesla MRI system. MPI image reconstruction was performed based on system matrices measured with dried KLB and Bayoxide E8706 coatings. The bimodal markers were clearly visible in both methods. They caused circular signal voids in MRI and areas of high signal intensity in MPI. Both the signal voids as well as the areas of high signal intensity were larger than the real marker size. Images that were reconstructed with a Bayoxide E8706 system matrix did not show sufficient MPI signal. Instrument markers with bimodal visibility are essential for the perspective of monitoring cardiovascular interventions with MPI/MRI hybrid systems.

4.
Cardiovasc Intervent Radiol ; 44(7): 1109-1115, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33723668

RESUMO

PURPOSE: To evaluate heating of a redilatable stent for the treatment of aortic coarctation in neonates and small children in the new imaging modality magnetic particle imaging and established magnetic resonance imaging. MATERIALS AND METHODS: The cobalt-chromium stent (BabyStent, OSYPKA AG, Rheinfelden, Germany) has a stent design which allows for redilatation and adjustment of the diameter from 6 to 16 mm for a use in aortic coarctation. The stent loses its radial integrity while opening at predetermined breaking points at a diameter of 14 mm or 16 mm, respectively. We measured the temperature increase in the stent at different diameters during 7-min magnetic particle imaging and magnetic resonance imaging scans with fiber optic thermometers under static conditions surrounded by air. In magnetic particle imaging, stents with diameters from 6 to 16 mm were tested while in magnetic resonance imaging only stents with diameters of 6 mm and 14 mm were investigated exemplarily. RESULT: In magnetic particle imaging, the measured temperature differences increased up to 4.7 K with growing diameters, whereas the opened stents with discontinuous struts at 14 and 16 mm showed only minimal heating of max. 0.5 K. In contrast to magnetic particle imaging, our measurements showed no heating of the stents during magnetic resonance imaging under identical conditions. CONCLUSION: The BabyStent did show only slight heating in magnetic particle imaging and no detectable temperature increase in magnetic resonance imaging.


Assuntos
Coartação Aórtica/cirurgia , Implante de Prótese Vascular/métodos , Calefação/métodos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Stents , Coartação Aórtica/diagnóstico , Humanos , Resultado do Tratamento
5.
Innov Surg Sci ; 3(3): 179-192, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31579782

RESUMO

Magnetic particle imaging (MPI) is a new medical imaging technique that enables three-dimensional real-time imaging of a magnetic tracer material. Although it is not yet in clinical use, it is highly promising, especially for vascular and interventional imaging. The advantages of MPI are that no ionizing radiation is necessary, its high sensitivity enables the detection of very small amounts of the tracer material, and its high temporal resolution enables real-time imaging, which makes MPI suitable as an interventional imaging technique. As MPI is a tracer-based imaging technique, functional imaging is possible by attaching specific molecules to the tracer material. In the first part of this article, the basic principle of MPI will be explained and a short overview of the principles of the generation and spatial encoding of the tracer signal will be given. After this, the used tracer materials as well as their behavior in MPI will be introduced. A subsequent presentation of selected scanner topologies will show the current state of research and the limitations researchers are facing on the way from preclinical toward human-sized scanners. Furthermore, it will be briefly shown how to reconstruct an image from the tracer materials' signal. In the last part, a variety of possible future clinical applications will be presented with an emphasis on vascular imaging, such as the use of MPI during cardiovascular interventions by visualizing the instruments. Investigations will be discussed, which show the feasibility to quantify the degree of stenosis and diagnose strokes and traumatic brain injuries as well as cerebral or gastrointestinal bleeding with MPI. As MPI is not only suitable for vascular medicine but also offers a broad range of other possible applications, a selection of those will be briefly presented at the end of the article.

6.
IEEE Trans Med Imaging ; 35(11): 2476-2485, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27323359

RESUMO

Magnetic Particle Imaging (MPI) is an emerging technology in the field of (pre)clinical imaging. The acquisition of a particle signal is realized along specific sampling trajectories covering a defined field of view (FOV). In a system matrix (SM) based reconstruction procedure, the commonly used acquisition path in MPI is a Lissajous trajectory. Such a trajectory features an inhomogeneous coverage of the FOV, i.e. the center region is sampled less dense than the regions towards the edges of the FOV. Conventionally, the respective SM acquisition and the subsequent reconstruction do not reflect this inhomogeneous coverage. Instead, they are performed on an equispaced grid. The objective of this work is to introduce a sampling grid that inherently features the aforementioned inhomogeneity by using node points of Lissajous trajectories. Paired with a tailored polynomial interpolation of the reconstructed MPI signal, the entire image can be recovered. It is the first time that such a trajectory related non-equispaced grid is used for image reconstruction on simulated and measured MPI data and it is shown that the number of sampling positions can be reduced, while the spatial resolution remains constant.


Assuntos
Diagnóstico por Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Nanopartículas de Magnetita/uso terapêutico , Algoritmos , Simulação por Computador , Imagens de Fantasmas
7.
IEEE Trans Med Imaging ; 35(4): 1056-65, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26701178

RESUMO

Magnetic Particle Imaging is a new medical imaging modality, which detects superparamagnetic iron oxide nanoparticles. The particles are excited by magnetic fields. Most scanners have a tube-like measurement field and therefore, both the field of view and the object size are limited. A single-sided scanner has the advantage that the object is not limited in size, only the penetration depth is limited. A single-sided scanner prototype for 1D imaging has been presented in 2009. Simulations have been published for a 2D single-sided scanner and first 1D measurements have been carried out. In this paper, the first 2D single-sided scanner prototype is presented and the first calibration-based reconstruction results of measured 2D phantoms are shown. The field free point is moved on a Lissajous trajectory inside a 30 × 30 mm2 area. Images of phantoms with a maximal distance of 10 mm perpendicular to the scanner surface have been reconstructed. Different cylindrically shaped holes of phantoms have been filled with 6.28 µl undiluted Resovist. After the measurement and image reconstruction of the phantoms, particle volumes could be distinguished with a distance of 2 mm and 6 mm in vertical and horizontal direction, respectively.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Nanopartículas de Magnetita/química , Imagem Molecular/métodos , Processamento de Sinais Assistido por Computador/instrumentação , Desenho de Equipamento , Imagem Molecular/instrumentação , Imagens de Fantasmas
8.
Int J Nanomedicine ; 10: 3097-114, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25960650

RESUMO

Magnetic particle imaging (MPI) is a novel imaging method that was first proposed by Gleich and Weizenecker in 2005. Applying static and dynamic magnetic fields, MPI exploits the unique characteristics of superparamagnetic iron oxide nanoparticles (SPIONs). The SPIONs' response allows a three-dimensional visualization of their distribution in space with a superb contrast, a very high temporal and good spatial resolution. Essentially, it is the SPIONs' superparamagnetic characteristics, the fact that they are magnetically saturable, and the harmonic composition of the SPIONs' response that make MPI possible at all. As SPIONs are the essential element of MPI, the development of customized nanoparticles is pursued with the greatest effort by many groups. Their objective is the creation of a SPION or a conglomerate of particles that will feature a much higher MPI performance than nanoparticles currently available commercially. A particle's MPI performance and suitability is characterized by parameters such as the strength of its MPI signal, its biocompatibility, or its pharmacokinetics. Some of the most important adjuster bolts to tune them are the particles' iron core and hydrodynamic diameter, their anisotropy, the composition of the particles' suspension, and their coating. As a three-dimensional, real-time imaging modality that is free of ionizing radiation, MPI appears ideally suited for applications such as vascular imaging and interventions as well as cellular and targeted imaging. A number of different theories and technical approaches on the way to the actual implementation of the basic concept of MPI have been seen in the last few years. Research groups around the world are working on different scanner geometries, from closed bore systems to single-sided scanners, and use reconstruction methods that are either based on actual calibration measurements or on theoretical models. This review aims at giving an overview of current developments and future directions in MPI about a decade after its first appearance.


Assuntos
Diagnóstico por Imagem , Nanopartículas de Magnetita , Diagnóstico por Imagem/métodos , Diagnóstico por Imagem/tendências
9.
IEEE Trans Med Imaging ; 34(2): 381-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25222946

RESUMO

The magnetic particle imaging (MPI) technology is a new imaging technique featuring an excellent possibility to detect iron oxide based nanoparticle accumulations in vivo. The excitation of the particles and in turn the signal generation in MPI are achieved by using oscillating magnetic fields. In order to realize a spatial encoding, a field-free point (FFP) is steered through the field of view (FOV). Such a positioning of the FFP can thereby be achieved by mechanical or electromagnetical movement. Conventionally, the data acquisition path is either a planar 2-D or a 3-D FFP trajectory. Assuming human applications, the size of the FOV sampled by such trajectories is strongly limited by heating of the body and by nerve stimulations. In this work, a new approach acquiring MPI data based on the axial elongation of a 2-D FFP trajectory is proposed. It is shown that such an elongation can be used as a data acquisition path to significantly increase the acquisition speed, with negligible loss of spatial resolution.


Assuntos
Diagnóstico por Imagem/métodos , Nanopartículas de Magnetita/química , Simulação por Computador , Modelos Teóricos , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...