Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 117(25): 250504, 2016 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-28036212

RESUMO

We obtain a low optical inhomogeneous linewidth of 25 MHz in the stoichiometric rare-earth crystal EuCl_{3}·6H_{2}O by isotopically purifying the crystal in ^{35}Cl. With this linewidth, an important limit for stoichiometric rare-earth crystals is surpassed: the hyperfine structure of ^{153}Eu is spectrally resolved, allowing the whole population of ^{153}Eu^{3+} ions to be prepared in the same hyperfine state using hole-burning techniques. This material also has a very high optical density, and can have long coherence times when deuterated. This combination of properties offers new prospects for quantum information applications. We consider two of these: quantum memories and quantum many-body studies. We detail the improvements in the performance of current memory protocols possible in these high optical depth crystals, and describe how certain memory protocols, such as off-resonant Raman memories, can be implemented for the first time in a solid-state system. We explain how the strong excitation-induced interactions observed in this material resemble those seen in Rydberg systems, and describe how these interactions can lead to quantum many-body states that could be observed using standard optical spectroscopy techniques.

2.
Phys Rev Lett ; 111(24): 240501, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24483634

RESUMO

We report measurements of discrete excitation-induced frequency shifts on the 7F0→5D0 transition of the Eu+ center in La:Lu:EuCl3·6D2O resulting from the optical excitation of neighboring Eu3+ ions. Shifts of up to 46.081±0.005 MHz were observed. The magnitude of the interaction between neighboring ions was found to be significantly larger than expected from the electric dipole-dipole mechanism often observed in rare earth systems. We show that a large network of interacting and individually addressable centers can be created by lightly doping crystals otherwise stoichiometric in the optically active rare earth ion, and that this network could be used to implement a quantum processor with more than ten qubits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...