Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 52019 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-30920392

RESUMO

Skeletal muscle weakness in patients suffering from rheumatoid arthritis (RA) adds to their impaired working abilities and reduced quality of life. However, little molecular insight is available on muscle weakness associated with RA. Oxidative stress has been implicated in the disease pathogenesis of RA. Here we show that oxidative post-translational modifications of the contractile machinery targeted to actin result in impaired actin polymerization and reduced force production. Using mass spectrometry, we identified the actin residues targeted by oxidative 3-nitrotyrosine (3-NT) or malondialdehyde adduct (MDA) modifications in weakened skeletal muscle from mice with arthritis and patients afflicted by RA. The residues were primarily located to three distinct regions positioned at matching surface areas of the skeletal muscle actin molecule from arthritis mice and RA patients. Moreover, molecular dynamic simulations revealed that these areas, here coined "hotspots", are important for the stability of the actin molecule and its capacity to generate filaments and interact with myosin. Together, these data demonstrate how oxidative modifications on actin promote muscle weakness in RA patients and provide novel leads for targeted therapeutic treatment to improve muscle function.


Assuntos
Actinas/metabolismo , Artrite Reumatoide/metabolismo , Debilidade Muscular/metabolismo , Músculo Esquelético/metabolismo , Estresse Oxidativo , Actinas/química , Animais , Artrite Reumatoide/complicações , Modelos Animais de Doenças , Feminino , Humanos , Malondialdeído , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Dinâmica Molecular , Contração Muscular/fisiologia , Debilidade Muscular/etiologia , Debilidade Muscular/fisiopatologia , Músculo Esquelético/fisiopatologia , Miosinas/química , Miosinas/metabolismo , Polimerização , Processamento de Proteína Pós-Traducional , Tirosina/análogos & derivados
2.
Biochem Mol Biol Educ ; 46(1): 58-65, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29131508

RESUMO

We describe an interactive module that can be used to teach basic concepts in electrochemistry and thermodynamics to first year natural science students. The module is used together with an experimental laboratory and improves the students' understanding of thermodynamic quantities such as Δr G, Δr H, and Δr S that are calculated but not directly measured in the lab. We also discuss how new technologies can substitute some parts of experimental chemistry courses, and improve accessibility to course material. Cloud computing platforms such as CoCalc facilitate the distribution of computer codes and allow students to access and apply interactive course tools beyond the course's scope. Despite some limitations imposed by cloud computing, the students appreciated the approach and the enhanced opportunities to discuss study questions with their classmates and instructor as facilitated by the interactive tools. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(1):58-65, 2018.


Assuntos
Bioquímica/educação , Técnicas Eletroquímicas/instrumentação , Laboratórios , Software , Estudantes , Humanos , Aprendizagem , Termodinâmica
3.
J Chem Phys ; 147(19): 194102, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29166095

RESUMO

When proteins are solvated in electrolyte solutions that contain alkali ions, the ions interact mostly with carboxylates on the protein surface. Correctly accounting for alkali-carboxylate interactions is thus important for realistic simulations of proteins. Acetates are the simplest carboxylates that are amphipathic, and experimental data for alkali acetate solutions are available and can be compared with observables obtained from simulations. We carried out molecular dynamics simulations of alkali acetate solutions using polarizable and non-polarizable forcefields and examined the ion-acetate interactions. In particular, activity coefficients and association constants were studied in a range of concentrations (0.03, 0.1, and 1M). In addition, quantum-mechanics (QM) based energy decomposition analysis was performed in order to estimate the contribution of polarization, electrostatics, dispersion, and QM (non-classical) effects on the cation-acetate and cation-water interactions. Simulations of Li-acetate solutions in general overestimated the binding of Li+ and acetates. In lower concentrations, the activity coefficients of alkali-acetate solutions were too high, which is suggested to be due to the simulation protocol and not the forcefields. Energy decomposition analysis suggested that improvement of the forcefield parameters to enable accurate simulations of Li-acetate solutions can be achieved but may require the use of a polarizable forcefield. Importantly, simulations with some ion parameters could not reproduce the correct ion-oxygen distances, which calls for caution in the choice of ion parameters when protein simulations are performed in electrolyte solutions.

4.
J Phys Chem A ; 121(13): 2643-2654, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28272891

RESUMO

Zinc plays important roles in structural stabilization of proteins, enzyme catalysis, and signal transduction. Many Zn binding sites are located at the interface between the protein and the cellular fluid. In aqueous solutions, Zn ions adopt an octahedral coordination, while in proteins zinc can have different coordinations, with a tetrahedral conformation found most frequently. The dynamics of Zn binding to proteins and the formation of complexes that involve Zn are dictated by interactions between Zn and its binding partners. We calculated the interaction energies between Zn and its ligands in complexes that mimic protein binding sites and in Zn complexes of water and one or two amino acid moieties, using quantum mechanics (QM) and molecular mechanics (MM). It was found that MM calculations that neglect or only approximate polarizability did not reproduce even the relative order of the QM interaction energies in these complexes. Interaction energies calculated with the CHARMM-Drude polarizable force field agreed better with the ab initio results, although the deviations between QM and MM were still rather large (40-96 kcal/mol). In order to gain further insight into Zn-ligand interactions, the free energies of interaction were estimated by QM calculations with continuum solvent representation, and we performed energy decomposition analysis calculations to examine the characteristics of the different complexes. The ligand-types were found to have high impact on the relative strength of polarization and electrostatic interactions. Interestingly, ligand-ligand interactions did not play a significant role in the binding of Zn. Finally, analysis of ligand exchange energies suggests that carboxylates could be exchanged with water molecules, which explains the flexibility in Zn binding dynamics. An exchange between carboxylate (Asp/Glu) and imidazole (His) is less likely.


Assuntos
Aminoácidos/química , Compostos Organometálicos/química , Teoria Quântica , Zinco/química , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA